Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
FEMS Microbiol Ecol ; 100(4)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38503562

ABSTRACT

Synthetic Communities (SynComs) are being developed and tested to manipulate plant microbiota and improve plant health. To date, only few studies proposed the use of SynCom on seed despite its potential for plant microbiota engineering. We developed and presented a simple and effective seedling microbiota engineering method using SynCom inoculation on seeds. The method was successful using a wide diversity of SynCom compositions and bacterial strains that are representative of the common bean seed microbiota. First, this method enables the modulation of seed microbiota composition and community size. Then, SynComs strongly outcompeted native seed and potting soil microbiota and contributed on average to 80% of the seedling microbiota. We showed that strain abundance on seed was a main driver of an effective seedling microbiota colonization. Also, selection was partly involved in seed and seedling colonization capacities since strains affiliated to Enterobacteriaceae and Erwiniaceae were good colonizers while Bacillaceae and Microbacteriaceae were poor colonizers. Additionally, the engineered seed microbiota modified the recruitment and assembly of seedling and rhizosphere microbiota through priority effects. This study shows that SynCom inoculation on seeds represents a promising approach to study plant microbiota assembly and its consequence on plant fitness.


Subject(s)
Microbiota , Seedlings , Seedlings/microbiology , Seeds , Plants/microbiology , Soil
2.
Environ Res ; 252(Pt 3): 118603, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38513752

ABSTRACT

In natural systems, organisms are embedded in complex networks where their physiology and community composition is shaped by both biotic and abiotic factors. Therefore, to assess the ecosystem-level effects of contaminants, we must pair complex, multi-trophic field studies with more targeted hypothesis-driven approaches to explore specific actors and mechanisms. Here, we examine aquatic microbiome responses to long-term additions of commercially-available metallic nanoparticles [copper-based (CuNPs) or gold (AuNPs)] and/or nutrients in complex, wetland mesocosms over 9 months, allowing for a full growth cycle of the aquatic plants. We found that both CuNPs and AuNPs (but not nutrient) treatments showed shifts in microbial communities and populations largely at the end of the experiment, as the aquatic plant community senesced. we examine aquatic microbiomes under chronic dosing of NPs and nutrients Simplified microbe-only or microbe + plant incubations revealed that direct effects of AuNPs on aquatic microbiomes can be buffered by plants (regardless of seasonal As mesocosms were dosed weekly, the absence of water column accumulation indicates the partitioning of both metals into other environmental compartments, mainly the floc and aquatic plants photosynthetically-derived organic matter. Overall, this study identifies the potential for NP environmental impacts to be either suppressed by or propagated across trophic levels via the presence of primary producers, highlighting the importance of organismal interactions in mediating emerging contaminants' ecosystem-wide impacts.

3.
Mol Plant Pathol ; 25(1): e13412, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38279854

ABSTRACT

Stenotrophomonas rhizophila CFBP13503 is a seedborne commensal bacterial strain, which is efficiently transmitted to seedlings and can outcompete the phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc8004). The type VI secretion system (T6SS), an interference contact-dependent mechanism, is a critical component of interbacterial competition. The involvement of the T6SS of S. rhizophila CFBP13503 in the inhibition of Xcc8004 growth and seed-to-seedling transmission was assessed. The T6SS cluster of S. rhizophila CFBP13503 and nine putative effectors were identified. Deletion of two T6SS structural genes, hcp and tssB, abolished the competitive advantage of S. rhizophila against Xcc8004 in vitro. The population sizes of these two bacterial species were monitored in seedlings after inoculation of radish seeds with mixtures of Xcc8004 and either S. rhizophila wild-type (wt) strain or isogenic hcp mutant. A significant decrease in the population size of Xcc8004 was observed during confrontation with the S. rhizophila wt in comparison with T6SS-deletion mutants in germinated seeds and seedlings. We found that the T6SS distribution among 835 genomes of the Stenotrophomonas genus is scarce. In contrast, in all available S. rhizophila genomes, T6SS clusters are widespread and mainly belong to the T6SS group i4. In conclusion, the T6SS of S. rhizophila CFBP13503 is involved in the antibiosis against Xcc8004 and reduces seedling transmission of Xcc8004 in radish. The distribution of this T6SS cluster in the S. rhizophila complex could make it possible to exploit these strains as biocontrol agents against X. campestris pv. campestris.


Subject(s)
Raphanus , Type VI Secretion Systems , Xanthomonas campestris , Seedlings/microbiology , Xanthomonas campestris/genetics , Seeds/microbiology , Stenotrophomonas/genetics , Bacterial Proteins/genetics
4.
Environ Sci Technol ; 57(37): 13970-13979, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37669159

ABSTRACT

Gold nanoparticles (AuNPs) are used as models to track and predict NP fates and effects in ecosystems. Previous work found that aquatic macrophytes and their associated biofilm primarily drove the fate of AuNPs within aquatic ecosystems and that seasonality was an important abiotic factor in the fate of AuNPs. Therefore, the present work aims to study if grazers, by feeding on these interfaces, modify the AuNP fate and if this is altered by seasonal fluctuations. Microcosms were dosed with 44.8 µg/L of AuNP weekly for 4 weeks and maintained in environmental chambers simulating Spring and Fall light and temperature conditions. We discovered that seasonal changes and the presence of grazers significantly altered the fate of Au. Higher temperatures in the warmer season increased dissolved organic carbon (DOC) content in the water column, leading to stabilization of Au in the water column. Additionally, snail grazing on biofilm growing on the Egeria densa surface led to a transfer of Au from macrophytes to the organic matter above the sediments. These results demonstrate that climate and grazers significantly impacted the fate of Au from AuNPs, highlighting the role that grazers might have in a large and biologically more complex ecosystem.


Subject(s)
Ecosystem , Metal Nanoparticles , Gold , Seasons , Water
5.
Ecol Lett ; 26(9): 1535-1547, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37337910

ABSTRACT

Environmental change research is plagued by the curse of dimensionality: the number of communities at risk and the number of environmental drivers are both large. This raises the pressing question if a general understanding of ecological effects is achievable. Here, we show evidence that this is indeed possible. Using theoretical and simulation-based evidence for bi- and tritrophic communities, we show that environmental change effects on coexistence are proportional to mean species responses and depend on how trophic levels on average interact prior to environmental change. We then benchmark our findings using relevant cases of environmental change, showing that means of temperature optima and of species sensitivities to pollution predict concomitant effects on coexistence. Finally, we demonstrate how to apply our theory to the analysis of field data, finding support for effects of land use change on coexistence in natural invertebrate communities.


Subject(s)
Climate Change , Invertebrates , Animals , Climate , Temperature , Ecosystem
6.
Environ Sci Technol ; 57(21): 8085-8095, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37200151

ABSTRACT

Freshwater ecosystems are exposed to engineered nanoparticles (NPs) through discharge from wastewater and agricultural runoff. We conducted a 9-month mesocosm experiment to examine the combined effects of chronic NP additions on insect emergence and insect-mediated contaminant flux to riparian spiders. Two NPs (copper, gold, plus controls) were crossed by two levels of nutrients in 18 outdoor mesocosms open to natural insect and spider colonization. We collected adult insects and two riparian spider genera, Tetragnatha and Dolomedes, for 1 week on a monthly basis. We estimated a significant decrease in cumulative insect emergence of 19% and 24% after exposure to copper and gold NPs, irrespective of nutrient level. NP treatments led to elevated copper and gold tissue concentrations in adult insects, which resulted in terrestrial fluxes of metals. These metal fluxes were associated with increased gold and copper tissue concentrations for both spider genera. We also observed about 25% fewer spiders in the NP mesocosms, likely due to reduced insect emergence and/or NP toxicity. These results demonstrate the transfer of NPs from aquatic to terrestrial ecosystems via emergence of aquatic insects and predation by riparian spiders, as well as significant reductions in insect and spider abundance in response to NP additions.


Subject(s)
Nanoparticles , Spiders , Animals , Ecosystem , Food Chain , Copper/pharmacology , Rivers , Insecta , Spiders/physiology , Gold/pharmacology
7.
Sci Adv ; 9(18): eadf4896, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37134169

ABSTRACT

Documenting trends of stream macroinvertebrate biodiversity is challenging because biomonitoring often has limited spatial, temporal, and taxonomic scopes. We analyzed biodiversity and composition of assemblages of >500 genera, spanning 27 years, and 6131 stream sites across forested, grassland, urban, and agricultural land uses throughout the United States. In this dataset, macroinvertebrate density declined by 11% and richness increased by 12.2%, and insect density and richness declined by 23.3 and 6.8%, respectively, over 27 years. In addition, differences in richness and composition between urban and agricultural versus forested and grassland streams have increased over time. Urban and agricultural streams lost the few disturbance-sensitive taxa they once had and gained disturbance-tolerant taxa. These results suggest that current efforts to protect and restore streams are not sufficient to mitigate anthropogenic effects.


Subject(s)
Ecosystem , Invertebrates , Animals , Rivers , Biodiversity , Forests , Environmental Monitoring
8.
mBio ; 13(6): e0164822, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36222511

ABSTRACT

The seed acts as the primary inoculum source for the plant microbiota. Understanding the processes involved in its assembly and dynamics during germination and seedling emergence has the potential to allow for the improvement of crop establishment. Changes in the bacterial community structure were tracked in 1,000 individual seeds that were collected throughout seed developments of beans and radishes. Seeds were associated with a dominant bacterial taxon that represented more than 75% of all reads. The identity of this taxon was highly variable between the plants and within the seeds of the same plant. We identified selection as the main ecological process governing the succession of dominant taxa during seed filling and maturation. In a second step, we evaluated the seedling transmission of seed-borne taxa in 160 individual plants. While the initial bacterial abundance on seeds was not a good predictor of seedling transmission, the identities of the seed-borne taxa modified the phenotypes of seedlings. Overall, this work revealed that individual seeds are colonized by a few bacterial taxa of highly variable identity, which appears to be important for the early stages of plant development. IMPORTANCE Seeds are key components of plant fitness and are central to the sustainability of the agri-food system. Both the seed quality for food consumption and the seed vigor in agricultural settings can be influenced by the seed microbiota. Understanding the ecological processes involved in seed microbiota assembly will inform future practices for promoting the presence of important seed microorganisms for plant health and productivity. Our results highlighted that seeds were associated with one dominant bacterial taxon of variable taxonomic identity. This variety of dominant taxa was due to (i) spatial heterogeneity between and within plants and (ii) primary succession during seed development. According to neutral models, selection was the main driver of microbial community assembly for both plant species.


Subject(s)
Microbiota , Seedlings , Germination , Seeds/microbiology
9.
FEMS Microbiol Ecol ; 98(9)2022 08 25.
Article in English | MEDLINE | ID: mdl-35867879

ABSTRACT

Due to their potential applications for food safety, there is a growing interest in rice root-associated microbial communities, but some systems remain understudied. Here, we compare the assemblage of root-associated microbiota in rice sampled in 19 small farmer's fields from irrigated and rainfed lowlands in Burkina Faso, using an amplicon metabarcoding approach of the 16S rRNA gene (prokaryotes, three plant samples per field) and ITS (fungi, one sample per field). In addition to the expected structure by root compartments (root vs rhizosphere) and geographical zones, we showed that the rice production system is a major driver of microbiome structure. In irrigated systems, we found a higher diversity of prokaryotic communities from the rhizosphere and more complex co-occurrence networks, compared to rainfed lowlands, while fungal communities exhibited an opposite pattern (higher richness in rainfed lowlands). Core taxa were different between the two systems, and indicator species were identified: mostly within Bacillaceae in rainfed lowlands, and within Burkholderiaceae and Moraxellaceae in irrigated areas. Finally, a higher abundance in rainfed lowlands was found for mycorrhizal fungi (both compartments) and rhizobia (rhizosphere only). Our results highlight deep microbiome differences induced by contrasted rice production systems that should consequently be considered for microbial engineering applications.


Subject(s)
Microbiota , Oryza , Burkina Faso , Farmers , Fungi/genetics , Humans , Oryza/microbiology , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Rhizosphere , Soil Microbiology
10.
Front Microbiol ; 13: 847964, 2022.
Article in English | MEDLINE | ID: mdl-35464948

ABSTRACT

Temperature strongly influences microbial community structure and function, in turn contributing to global carbon cycling that can fuel further warming. Recent studies suggest that biotic interactions among microbes may play an important role in determining the temperature responses of these communities. However, how predation regulates these microbiomes under future climates is still poorly understood. Here, we assess whether predation by a key global bacterial consumer-protists-influences the temperature response of the community structure and function of a freshwater microbiome. To do so, we exposed microbial communities to two cosmopolitan protist species-Tetrahymena thermophila and Colpidium sp.-at two different temperatures, in a month-long microcosm experiment. While microbial biomass and respiration increased with temperature due to community shifts, these responses changed over time and in the presence of protists. Protists influenced microbial biomass and respiration rate through direct and indirect effects on bacterial community structure, and predator presence actually reduced microbial respiration at elevated temperature. Indicator species analyses showed that these predator effects were mostly determined by phylum-specific bacterial responses to protist density and cell size. Our study supports previous findings that temperature is an important driver of microbial communities but also demonstrates that the presence of a large predator can mediate these responses to warming.

11.
New Phytol ; 234(4): 1448-1463, 2022 05.
Article in English | MEDLINE | ID: mdl-35175621

ABSTRACT

Seed microbiota constitutes a primary inoculum for plants that is gaining attention owing to its role for plant health and productivity. Here, we performed a meta-analysis on 63 seed microbiota studies covering 50 plant species to synthesize knowledge on the diversity of this habitat. Seed microbiota are diverse and extremely variable, with taxa richness varying from one to thousands of taxa. Hence, seed microbiota presents a variable (i.e. flexible) microbial fraction but we also identified a stable (i.e. core) fraction across samples. Around 30 bacterial and fungal taxa are present in most plant species and in samples from all over the world. Core taxa, such as Pantoea agglomerans, Pseudomonas viridiflava, P. fluorescens, Cladosporium perangustum and Alternaria sp., are dominant seed taxa. The characterization of the core and flexible seed microbiota provided here will help uncover seed microbiota roles for plant health and design effective microbiome engineering.


Subject(s)
Microbiota , Bacteria , Plants , Seeds/microbiology
13.
Sci Rep ; 12(1): 207, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997057

ABSTRACT

Fungal communities associated with roots play a key role in nutrient uptake and in mitigating the abiotic and biotic stress of their host. In this study, we characterized the roots mycobiome of wild and cultivated pearl millet [Pennisetum glaucum (L.) R. Br., synonym: Cenchrus americanus (L.) Morrone] in three agro-ecological areas of Senegal following a rainfall gradient. We hypothesized that wild pearl millet could serve as a reservoir of endophytes for cultivated pearl millet. We therefore analyzed the soil factors influencing fungal community structure and whether cultivated and wild millet shared the same fungal communities. The fungal communities associated with pearl millet were significantly structured according to sites and plant type (wild vs cultivated). Besides, soil pH and phosphorus were the main factors influencing the fungal community structure. We observed a higher fungal diversity in cultivated compared to wild pearl millet. Interestingly, we detected higher relative abundance of putative pathotrophs, especially plant pathogen, in cultivated than in wild millet in semi-arid and semi-humid zones, and higher relative abundance of saprotrophs in wild millet in arid and semi-humid zones. A network analysis based on taxa co-occurrence patterns in the core mycobiome revealed that cultivated millet and wild relatives had dissimilar groups of hub taxa. The identification of the core mycobiome and hub taxa of cultivated and wild pearl millet could be an important step in developing microbiome engineering approaches for more sustainable management practices in pearl millet agroecosystems.


Subject(s)
Crops, Agricultural/microbiology , Fungi/growth & development , Mycobiome , Pennisetum/microbiology , Plant Roots/microbiology , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , DNA Barcoding, Taxonomic , DNA, Fungal/genetics , Fungi/genetics , Hydrogen-Ion Concentration , Pennisetum/growth & development , Pennisetum/metabolism , Phosphorus/chemistry , Phylogeny , Plant Roots/growth & development , Plant Roots/metabolism , Senegal , Soil/chemistry
14.
Sci Total Environ ; 805: 150189, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34818783

ABSTRACT

With advances in eDNA metabarcoding, environmental microbiomes are increasingly used as cost-effective tools for monitoring ecosystem health. Stream ecosystems in Central Appalachia, heavily impacted by alkaline drainage from mountaintop coal mining, present ideal opportunities for biomonitoring using stream microbiomes, but the structural and functional responses of microbial communities in different environmental compartments are not well understood. We investigated sediment microbiomes in mining impacted streams to determine how community composition and function respond to mining and to look for potential microbial bioindicators. Using 16s rRNA gene amplicon sequencing, we found that mining leads to shifts in microbial community structure, with the phylum Planctomycetes enriched by 1-6% at mined sites. We observed ~51% increase in species richness in bulk sediments. In contrast, of the 31 predicted metabolic pathways that changed significantly with mining, 23 responded negatively. Mining explained 15-18% of the variance in community structure and S, Se, %C and %N were the main drivers of community and functional pathway composition. We identified 12 microbial indicators prevalent in the ecosystem and sensitive to mining. Overall, alkaline mountaintop mining drainage causes a restructuration of the sediment microbiome, and our study identified promising microbial indicators for the long-term monitoring of these impacted streams.


Subject(s)
Coal Mining , Microbiota , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Rivers
15.
mSystems ; 6(4): e0053821, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34402638

ABSTRACT

Every seed germinating in soils, wastewater treatment, and stream confluence exemplify microbial community coalescence-the blending of previously isolated communities. Here, we present theoretical and experimental knowledge on how separated microbial communities mix, with particular focus on managed ecosystems. We adopt the community coalescence framework, which integrates metacommunity theory and meta-ecosystem dynamics, and highlight the prevalence of these coalescence events within microbial systems. Specifically, we (i) describe fundamental types of community coalescences using naturally occurring and managed examples, (ii) offer ways forward to leverage community coalescence in managed systems, and (iii) emphasize the importance of microbial ecological theory to achieving desired coalescence outcomes. Further, considering the massive dispersal events of microbiomes and their coalescences is pivotal to better predict microbial community dynamics and responses to disturbances. We conclude our piece by highlighting some challenges and unanswered question yet to be tackled.

16.
Ecol Appl ; 31(6): e02389, 2021 09.
Article in English | MEDLINE | ID: mdl-34142402

ABSTRACT

The rivers of Appalachia (United States) are among the most biologically diverse freshwater ecosystems in the temperate zone and are home to numerous endemic aquatic organisms. Throughout the Central Appalachian ecoregion, extensive surface coal mines generate alkaline mine drainage that raises the pH, salinity, and trace element concentrations in downstream waters. Previous regional assessments have found significant declines in stream macroinvertebrate and fish communities after draining these mined areas. Here, we expand these assessments with a more comprehensive evaluation across a broad range of organisms (bacteria, algae, macroinvertebrates, all eukaryotes, and fish) using high-throughput amplicon sequencing of environmental DNA (eDNA). We collected water samples from 93 streams in Central Appalachia (West Virginia, United States) spanning a gradient of mountaintop coal mining intensity and legacy to assess how this land use alters downstream water chemistry and affects aquatic biodiversity. For each group of organisms, we identified the sensitive and tolerant taxa along the gradient and calculated stream specific conductivity thresholds in which large synchronous declines in diversity were observed. Streams below mining operations had steep declines in diversity (-18 to -41%) and substantial shifts in community composition that were consistent across multiple taxonomic groups. Overall, large synchronous declines in bacterial, algal, and macroinvertebrate communities occurred even at low levels of mining impact at stream specific conductivity thresholds of 150-200 µS/cm that are substantially below the current U.S. Environmental Protection Agency aquatic life benchmark of 300 µS/cm for Central Appalachian streams. We show that extensive coal surface mining activities led to the extirpation of 40% of biodiversity from impacted rivers throughout the region and that current water quality criteria are likely not protective for many groups of aquatic organisms.


Subject(s)
Coal Mining , Water Pollutants, Chemical , Animals , Biodiversity , Ecosystem , Environmental Monitoring , Invertebrates , Mining , Rivers , Water Pollutants, Chemical/analysis
17.
mSystems ; 6(3): e0044621, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34100639

ABSTRACT

The seed microbial community constitutes an initial inoculum for plant microbiota assembly. Still, the persistence of seed microbiota when seeds encounter soil during plant emergence and early growth is barely documented. We characterized the encounter event of seed and soil microbiota and how it structured seedling bacterial and fungal communities by using amplicon sequencing. We performed eight contrasting encounter events to identify drivers influencing seedling microbiota assembly. To do so, four contrasting seed lots of two Brassica napus genotypes were sown in two soils whose microbial diversity levels were manipulated by serial dilution and recolonization. Seedling root and stem microbiota were influenced by soil but not by initial seed microbiota composition or by plant genotype. A strong selection on the seed and soil communities occurred during microbiota assembly, with only 8% to 32% of soil taxa and 0.8% to 1.4% of seed-borne taxa colonizing seedlings. The recruitment of seedling microbiota came mainly from soil (35% to 72% of diversity) and not from seeds (0.3% to 15%). Soil microbiota transmission success was higher for the bacterial community than for the fungal community. Interestingly, seedling microbiota was primarily composed of initially rare taxa (from seed, soil, or unknown origin) and intermediate-abundance soil taxa. IMPORTANCE Seed microbiota can have a crucial role for crop installation by modulating dormancy, germination, seedling development, and recruitment of plant symbionts. Little knowledge is available on the fraction of the plant microbiota that is acquired through seeds. We characterize the encounter between seed and soil communities and how they colonize the seedling together. Transmission success and seedling community assemblage can be influenced by the variation of initial microbial pools, i.e., plant genotype and cropping year for seeds and diversity level for soils. Despite a supposed resident advantage of the seed microbiota, we show that transmission success is in favor of the soil microbiota. Our results also suggest that successful plant-microbiome engineering based on native seed or soil microbiota must include rare taxa.

18.
Sci Total Environ ; 783: 146952, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-33866176

ABSTRACT

The fate of nanoparticles (NPs) in soil under relevant environmental conditions is still poorly understood. In this study, the mobility of two metal-oxide nanoparticles (CuO and TiO2) in contrasting agricultural soils was investigated in water-saturated soil columns. The transport of TiO2 and CuO-NPs were assessed in six soils with three different textures (from sand to clay) and two contrasted organic matter (OM) contents for each texture. TiO2 mobility was very low in all soils, regardless of texture and OM content. Mass recoveries were always less than 5%, probably in relation with the strong homo-aggregation of TiO2-NPs observed in all soil solutions, with apparent sizes 3-6 times larger than their nominal size. This low mobility suggests that TiO2-NPs present a low risk of direct groundwater contamination in contrasted surface soils. Although their retention was also generally high (more than 86%), CuO nanoparticles were found to be mobile in all soils. This is probably related to their smaller apparent size and low capacity of homo-aggregation of CuO-NPs in all soil solutions. No clear influence of neither soil texture or soil total organic matter content could be observed on CuO transport. However, this study shows that in contrasted agricultural soils, CuO-NPs transport is mainly controlled by the solutes dissolved in soil solution (DOC and PO4 species), rather than by the properties of the soil solid phase.

19.
Front Microbiol ; 12: 567408, 2021.
Article in English | MEDLINE | ID: mdl-33776947

ABSTRACT

Aquatic ecosystems are under increasing stress from global anthropogenic and natural changes, including climate change, eutrophication, ocean acidification, and pollution. In this critical review, we synthesize research on the microbiota of aquatic vertebrates and discuss the impact of emerging stressors on aquatic microbial communities using two case studies, that of toxic cyanobacteria and microplastics. Most studies to date are focused on host-associated microbiomes of individual organisms, however, few studies take an integrative approach to examine aquatic vertebrate microbiomes by considering both host-associated and free-living microbiota within an ecosystem. We highlight what is known about microbiota in aquatic ecosystems, with a focus on the interface between water, fish, and marine mammals. Though microbiomes in water vary with geography, temperature, depth, and other factors, core microbial functions such as primary production, nitrogen cycling, and nutrient metabolism are often conserved across aquatic environments. We outline knowledge on the composition and function of tissue-specific microbiomes in fish and marine mammals and discuss the environmental factors influencing their structure. The microbiota of aquatic mammals and fish are highly unique to species and a delicate balance between respiratory, skin, and gastrointestinal microbiota exists within the host. In aquatic vertebrates, water conditions and ecological niche are driving factors behind microbial composition and function. We also generate a comprehensive catalog of marine mammal and fish microbial genera, revealing commonalities in composition and function among aquatic species, and discuss the potential use of microbiomes as indicators of health and ecological status of aquatic ecosystems. We also discuss the importance of a focus on the functional relevance of microbial communities in relation to organism physiology and their ability to overcome stressors related to global change. Understanding the dynamic relationship between aquatic microbiota and the animals they colonize is critical for monitoring water quality and population health.

20.
Environ Sci Technol ; 54(16): 10170-10180, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32672035

ABSTRACT

Freshwater ecosystems are exposed to engineered nanoparticles through municipal and industrial wastewater-effluent discharges and agricultural nonpoint source runoff. Because previous work has shown that engineered nanoparticles from these sources can accumulate in freshwater algal assemblages, we hypothesized that nanoparticles may affect the biology of primary consumers by altering the processing of two critical nutrients associated with growth and survivorship, nitrogen and phosphorus. We tested this hypothesis by measuring the excretion rates of nitrogen and phosphorus of Physella acuta, a ubiquitous pulmonate snail that grazes heavily on periphyton, exposed to either copper or gold engineered nanoparticles for 6 months in an outdoor wetland mesocosm experiment. Chronic nanoparticle exposure doubled nutrient excretion when compared to the control. Gold nanoparticles increased nitrogen and phosphorus excretion rates more than copper nanoparticles, but overall, both nanoparticles led to higher consumer excretion, despite contrasting particle stability and physiochemical properties. Snails in mesocosms enriched with nitrogen and phosphorus had overall higher excretion rates than ones in ambient (no nutrients added) mesocosms. Stimulation patterns were different between nitrogen and phosphorus excretion, which could have implications for the resulting nutrient ratio in the water column. These results suggest that low concentrations of engineered nanoparticles could alter the metabolism of consumers and increase consumer-mediated nutrient recycling rates, potentially intensifying eutrophication in aquatic systems, for example, the increased persistence of algal blooms as observed in our mesocosm experiment.


Subject(s)
Ecosystem , Metal Nanoparticles , Animals , Copper , Gold , Nitrogen , Nutrients , Phosphorus
SELECTION OF CITATIONS
SEARCH DETAIL
...