Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Br J Clin Pharmacol ; 90(4): 1142-1151, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38288879

ABSTRACT

AIMS: Shiga toxin-producing Escherichia coli-haemolytic uraemic syndrome (STEC-HUS) is considered a toxaemic disorder in which early intervention with neutralizing antibodies may have therapeutic benefits. INM004, composed of F (ab')2 fragments from equine immunoglobulins, neutralizes Stx1/Stx2, potentially preventing the onset of HUS. METHODS: A single-centre, randomized, phase 1, single-blind, placebo-controlled clinical trial to evaluate INM004 safety, tolerance and pharmacokinetics (PK) in healthy adult volunteers, was conducted; in stage I, eight subjects were divided in two cohorts (n = 4) to receive a single INM004 dose of 2 or 4 mg kg-1, or placebo (INM004:placebo ratio of 3:1). In stage II, six subjects received three INM004 doses of 4 mg kg-1 repeated every 24 h, or placebo (INM004:placebo ratio of 5:1). RESULTS: Eight subjects (57.1%) experienced mild treatment-emergent adverse events (TEAEs); most frequent were rhinitis, headache and flushing, resolved within 24 h without changes in treatment or additional intervention. No serious AEs were reported. Peak concentrations of INM004 occurred within 2 h after infusion, with median Cmax values of 45.1 and 77.7 µg mL-1 for 2 and 4 mg kg-1, respectively. The serum concentration of INM004 declined in a biphasic manner (t1/2 range 30.7-52.9 h). Systemic exposures increased with each subsequent dose in a dose-proportional manner, exhibiting accumulation. Geometric median Cmax and AUC values were 149 and 10 300 µg h mL-1, respectively, in the repeated dose regimen. Additionally, samples from subjects that received INM004 at 2 mg kg-1 showed neutralizing capacity against Stx1 and Stx2 in in vitro assays. CONCLUSIONS: The results obtained in this first-in-human study support progression into the phase 2 trial in children with HUS.


Subject(s)
Hemolytic-Uremic Syndrome , Shiga Toxin 2 , Child , Adult , Humans , Animals , Horses , Shiga Toxin 1 , Healthy Volunteers , Single-Blind Method
3.
Transfus Apher Sci ; 62(6): 103785, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37620184

ABSTRACT

BACKGROUND: Convalescent plasma (CP) became a prominent treatment in the early stages of the SARS-CoV-2 pandemic. In Argentina, a randomized clinical trial was executed to compare the use of CP in inpatients with severe COVID-19 pneumonia versus placebo. No differences in clinical outcomes or overall mortality between groups were observed. We conducted a cohort study in outpatients enrolled in the trial to describe long-term antibody titer variations between CP and placebo recipients. METHODS: Patients' total SARS-CoV-2 IgG antibodies against spike protein were collected 3, 6 and 12 months after hospital discharge from August 2020 to December 2021. In addition, reinfections, deaths and vaccination status were retrieved. Statistical analysis was performed using antibody geometric mean titers (GMT). All estimations were made considering the date of the trial infusion (placebo or CP) as time 0. RESULTS: From the 93 patients included in the follow-up, 64 had received CP and 29 placebo. We excluded all 12-month measurements because they were collected after the patients' vaccination date. At 90 days post-infusion, patients had an antibody GMT of 8.1 (IQR 7.4-8.1) in the CP group and 8.8 (IQR 8.1-9.1) in the placebo group. At 180 days, both groups had a GMT of 8.1 (IQR 7.4-8.1). No statistical differences in GMT were found between CP and placebo groups at 90 days (p = 0.12) and 180 days (p = 0.25). No patients registered a new COVID-19 infection; one died in the CP group from an ischemic stroke. CONCLUSIONS: No differences were observed in long-term antibody titers in unvaccinated patients that received CP or placebo after severe COVID-19 pneumonia.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , COVID-19/etiology , SARS-CoV-2 , Cohort Studies , Immunization, Passive/adverse effects , COVID-19 Serotherapy , Antibodies, Viral
4.
JAMA Netw Open ; 5(1): e2147375, 2022 01 04.
Article in English | MEDLINE | ID: mdl-35076698

ABSTRACT

Importance: Identifying which patients with COVID-19 are likely to benefit from COVID-19 convalescent plasma (CCP) treatment may have a large public health impact. Objective: To develop an index for predicting the expected relative treatment benefit from CCP compared with treatment without CCP for patients hospitalized for COVID-19 using patients' baseline characteristics. Design, Setting, and Participants: This prognostic study used data from the COMPILE study, ie, a meta-analysis of pooled individual patient data from 8 randomized clinical trials (RCTs) evaluating CCP vs control in adults hospitalized for COVID-19 who were not receiving mechanical ventilation at randomization. A combination of baseline characteristics, termed the treatment benefit index (TBI), was developed based on 2287 patients in COMPILE using a proportional odds model, with baseline characteristics selected via cross-validation. The TBI was externally validated on 4 external data sets: the Expanded Access Program (1896 participants), a study conducted under Emergency Use Authorization (210 participants), and 2 RCTs (with 80 and 309 participants). Exposure: Receipt of CCP. Main Outcomes and Measures: World Health Organization (WHO) 11-point ordinal COVID-19 clinical status scale and 2 derivatives of it (ie, WHO score of 7-10, indicating mechanical ventilation to death, and WHO score of 10, indicating death) at day 14 and day 28 after randomization. Day 14 WHO 11-point ordinal scale was used as the primary outcome to develop the TBI. Results: A total of 2287 patients were included in the derivation cohort, with a mean (SD) age of 60.3 (15.2) years and 815 (35.6%) women. The TBI provided a continuous gradation of benefit, and, for clinical utility, it was operationalized into groups of expected large clinical benefit (B1; 629 participants in the derivation cohort [27.5%]), moderate benefit (B2; 953 [41.7%]), and potential harm or no benefit (B3; 705 [30.8%]). Patients with preexisting conditions (diabetes, cardiovascular and pulmonary diseases), with blood type A or AB, and at an early COVID-19 stage (low baseline WHO scores) were expected to benefit most, while those without preexisting conditions and at more advanced stages of COVID-19 could potentially be harmed. In the derivation cohort, odds ratios for worse outcome, where smaller odds ratios indicate larger benefit from CCP, were 0.69 (95% credible interval [CrI], 0.48-1.06) for B1, 0.82 (95% CrI, 0.61-1.11) for B2, and 1.58 (95% CrI, 1.14-2.17) for B3. Testing on 4 external datasets supported the validation of the derived TBIs. Conclusions and Relevance: The findings of this study suggest that the CCP TBI is a simple tool that can quantify the relative benefit from CCP treatment for an individual patient hospitalized with COVID-19 that can be used to guide treatment recommendations. The TBI precision medicine approach could be especially helpful in a pandemic.


Subject(s)
COVID-19/therapy , Hospitalization , Patient Selection , Plasma , Therapeutic Index , Aged , Blood Grouping and Crossmatching , Comorbidity , Female , Humans , Immunization, Passive , Male , Middle Aged , Odds Ratio , Pandemics , Respiration, Artificial , SARS-CoV-2 , Severity of Illness Index , Treatment Outcome , World Health Organization , COVID-19 Serotherapy
5.
N Engl J Med ; 384(7): 619-629, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33232588

ABSTRACT

BACKGROUND: Convalescent plasma is frequently administered to patients with Covid-19 and has been reported, largely on the basis of observational data, to improve clinical outcomes. Minimal data are available from adequately powered randomized, controlled trials. METHODS: We randomly assigned hospitalized adult patients with severe Covid-19 pneumonia in a 2:1 ratio to receive convalescent plasma or placebo. The primary outcome was the patient's clinical status 30 days after the intervention, as measured on a six-point ordinal scale ranging from total recovery to death. RESULTS: A total of 228 patients were assigned to receive convalescent plasma and 105 to receive placebo. The median time from the onset of symptoms to enrollment in the trial was 8 days (interquartile range, 5 to 10), and hypoxemia was the most frequent severity criterion for enrollment. The infused convalescent plasma had a median titer of 1:3200 of total SARS-CoV-2 antibodies (interquartile range, 1:800 to 1:3200). No patients were lost to follow-up. At day 30 day, no significant difference was noted between the convalescent plasma group and the placebo group in the distribution of clinical outcomes according to the ordinal scale (odds ratio, 0.83; 95% confidence interval [CI], 0.52 to 1.35; P = 0.46). Overall mortality was 10.96% in the convalescent plasma group and 11.43% in the placebo group, for a risk difference of -0.46 percentage points (95% CI, -7.8 to 6.8). Total SARS-CoV-2 antibody titers tended to be higher in the convalescent plasma group at day 2 after the intervention. Adverse events and serious adverse events were similar in the two groups. CONCLUSIONS: No significant differences were observed in clinical status or overall mortality between patients treated with convalescent plasma and those who received placebo. (PlasmAr ClinicalTrials.gov number, NCT04383535.).


Subject(s)
Antibodies, Neutralizing/blood , COVID-19/therapy , Immunoglobulin G/blood , Pneumonia, Viral/therapy , SARS-CoV-2/immunology , Aged , Aged, 80 and over , Blood Component Transfusion , COVID-19/complications , COVID-19/mortality , Disease Progression , Double-Blind Method , Female , Hospitalization , Humans , Immunization, Passive , Kaplan-Meier Estimate , Male , Middle Aged , Pneumonia, Viral/etiology , Pneumonia, Viral/mortality , Severity of Illness Index , COVID-19 Serotherapy
6.
J Diabetes Sci Technol ; 12(5): 914-925, 2018 09.
Article in English | MEDLINE | ID: mdl-29998754

ABSTRACT

BACKGROUND: Emerging therapies such as closed-loop (CL) glucose control, also known as artificial pancreas (AP) systems, have shown significant improvement in type 1 diabetes mellitus (T1DM) management. However, demanding patient intervention is still required, particularly at meal times. To reduce treatment burden, the automatic regulation of glucose (ARG) algorithm mitigates postprandial glucose excursions without feedforward insulin boluses. This work assesses feasibility of this new strategy in a clinical trial. METHODS: A 36-hour pilot study was performed on five T1DM subjects to validate the ARG algorithm. Subjects wore a subcutaneous continuous glucose monitor (CGM) and an insulin pump. Insulin delivery was solely commanded by the ARG algorithm, without premeal insulin boluses. This was the first clinical trial in Latin America to validate an AP controller. RESULTS: For the total 36-hour period, results were as follows: average time of CGM readings in range 70-250 mg/dl: 88.6%, in range 70-180 mg/dl: 74.7%, <70 mg/dl: 5.8%, and <50 mg/dl: 0.8%. Results improved analyzing the final 15-hour period of this trial. In that case, the time spent in range was 70-250 mg/dl: 94.7%, in range 70-180 mg/dl: 82.6%, <70 mg/dl: 4.1%, and <50 mg/dl: 0.2%. During the last night the time spent in range was 70-250 mg/dl: 95%, in range 70-180 mg/dl: 87.7%, <70 mg/dl: 5.0%, and <50 mg/dl: 0.0%. No severe hypoglycemia occurred. No serious adverse events were reported. CONCLUSIONS: The ARG algorithm was successfully validated in a pilot clinical trial, encouraging further tests with a larger number of patients and in outpatient settings.


Subject(s)
Algorithms , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Pancreas, Artificial , Adult , Blood Glucose Self-Monitoring , Female , Humans , Insulin Infusion Systems , Latin America , Male , Middle Aged , Pilot Projects , Postprandial Period
7.
Arch Cardiol Mex ; 84(1): 25-31, 2014.
Article in Spanish | MEDLINE | ID: mdl-24636047

ABSTRACT

Cardiovascular disease remains a major cause of morbidity and mortality worldwide. Current medical practice takes into account information based on population studies and benefits observed in large populations or cohorts. However, individual patients present great differences in both toxicity and clinical efficacy that can be explained by variations in adherence, unknown drug to drug interactions and genetic variability. The latter seems to explain from 20% up to 95% of patient to patient variability. Treating patients with cardiovascular disorders faces the clinician with the challenge to include genomic analysis into daily practice. There are several examples within cardiovascular disease of treatments that can vary in toxicity or clinical usefulness based on genetic changes. One of the main factors affecting the efficacy of Clopidogrel is the phenotype associated with polymorphisms in the gene CYP 2C9. Furthermore, regarding oral anticoagulants, changes in CYP2C9 and VKORC1 play an important role in changing the clinical response to anticoagulation. When analyzing statin treatment, one of their main toxicities (myopathy) can be predicted by the SLCO1B1 polymorphism. The potential for prediction of toxicity and clinical efficacy from the use of genetic analysis warrants further studies aiming towards its inclusion in daily clinical practice.


Subject(s)
Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/genetics , Anticoagulants/therapeutic use , Clopidogrel , Humans , Platelet Aggregation Inhibitors/therapeutic use , Polymorphism, Genetic , Ticlopidine/analogs & derivatives , Ticlopidine/therapeutic use
8.
Arch. cardiol. Méx ; 84(1): 25-31, ene.-mar. 2014. tab
Article in Spanish | LILACS | ID: lil-712907

ABSTRACT

La enfermedad cardiovascular representa la primera causa de morbimortalidad a nivel mundial. Actualmente, la evidencia que sustenta la implementación de determinadas intervenciones terapéuticas se origina a partir de datos provenientes de grupos poblacionales. Sin embargo, los pacientes presentan variaciones interindividuales relacionadas tanto con la eficacia como con la toxicidad ante un mismo tratamiento farmacológico. Estas variaciones pueden ser explicadas principalmente por diferencias en la adherencia, interacciones no reconocidas y diferencias genéticas. Las alteraciones en el genoma explican entre un 20 y un 95% de la variabilidad interindividual tanto en la disponibilidad como en la respuesta a fármacos. En el tratamiento de las enfermedades cardiovasculares existen diversos ejemplos de dicha variabilidad genética interindividual y su impacto en la eficacia o toxicidad de diferentes fármacos. La variabilidad genética que determina la respuesta al clopidogrel radica fundamentalmente en el polimorfismo del citocromo (CYP) 2C19. Los polimorfismos en los genes CYP 2C9 y VKORC1 explican gran parte de la variabilidad en la respuesta a los anticoagulantes dicumarínicos. Con respecto al tratamiento hipolipidemiante, el polimorfismo del gen SLCO1B1 se ha asociado a la aparición de miopatía en pacientes tratados con simvastatina. Muchos otros polimorfismos han sido postulados pero sin un impacto clínico definido hasta la fecha. La utilización de la farmacogenómica en la práctica cotidiana ofrece la oportunidad de poder predecir toxicidad o eficacia terapéutica.


Cardiovascular disease remains a major cause of morbidity and mortality worldwide. Current medical practice takes into account information based on population studies and benefits observed in large populations or cohorts. However, individual patients present great differences in both toxicity and clinical efficacy that can be explained by variations in adherence, unknown drug to drug interactions and genetic variability. The latter seems to explain from 20% up to 95% of patient to patient variability. Treating patients with cardiovascular disorders faces the clinician with the challenge to include genomic analysis into daily practice. There are several examples within cardiovascular disease of treatments that can vary in toxicity or clinical usefulness based on genetic changes. One of the main factors affecting the efficacy of Clopidogrel is the phenotype associated with polymorphisms in the gene CYP 2C9. Furthermore, regarding oral anticoagulants, changes in CYP2C9 and VKORC1 play an important role in changing the clinical response to anticoagulation. When analyzing statin treatment, one of their main toxicities (myopathy) can be predicted by the SLCO1B1 polymorphism. The potential for prediction of toxicity and clinical efficacy from the use of genetic analysis warrants further studies aiming towards its inclusion in daily clinical practice.


Subject(s)
Humans , Cardiovascular Diseases/genetics , Cardiovascular Diseases/drug therapy , Polymorphism, Genetic , Ticlopidine/analogs & derivatives , Ticlopidine/therapeutic use , Platelet Aggregation Inhibitors/therapeutic use , Clopidogrel , Anticoagulants/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...