Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Bacteriol ; 206(1): e0036923, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38169298

ABSTRACT

The bacterial peptidoglycan (PG) cell wall is remodeled during growth and division, releasing fragments called muropeptides. Muropeptides can be internalized and reused in a process called PG recycling. Escherichia coli is highly devoted to recycling muropeptides and is known to have at least two transporters, AmpG and OppBCDF, that import them into the cytoplasm. While studying mutants lacking AmpG, we unintentionally isolated mutations that led to the altered expression of a third transporter, CadB. CadB is normally upregulated under acidic pH conditions and is an antiporter for lysine and cadaverine. Here, we explored if CadB was altering PG recycling to assist in the absence of AmpG. Surprisingly, CadB overexpression was able to restore PG recycling when both AmpG and OppBCDF were absent. CadB was found to import freed PG peptides, a subpopulation of muropeptides, through a promiscuous activity. Altogether, our data support that CadB is a third transporter capable of contributing to PG recycling. IMPORTANCE Bacteria produce a rigid mesh cell wall. During growth, the cell wall is remodeled, which releases cell wall fragments. If released into the extracellular environment, cell wall fragments can trigger inflammation by the immune system of a host. Gastrointestinal bacteria, like Escherichia coli, have dedicated pathways to recycle almost all cell wall fragments they produce. E. coli contains two known recycling transporters, AmpG and Opp, that we previously showed are optimized for growth in different environments. Here, we identify that a third transporter, CadB, can also contribute to cell wall recycling. This work expands our understanding of cell wall recycling and highlights the dedication of organisms like E. coli to ensure high recycling in multiple growth environments.


Subject(s)
Escherichia coli , Peptidoglycan , Peptidoglycan/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Membrane Transport Proteins/metabolism , Biological Transport , Bacteria/metabolism , Cell Wall/metabolism
2.
Proc Natl Acad Sci U S A ; 120(44): e2308940120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37871219

ABSTRACT

Bacteria produce a structural layer of peptidoglycan (PG) that enforces cell shape, resists turgor pressure, and protects the cell. As bacteria grow and divide, the existing layer of PG is remodeled and PG fragments are released. Enterics such as Escherichia coli go to great lengths to internalize and reutilize PG fragments. E. coli is estimated to break down one-third of its cell wall, yet only loses ~0 to 5% of meso-diaminopimelic acid, a PG-specific amino acid, per generation. Two transporters were identified early on to possibly be the primary permease that facilitates PG fragment recycling, i) AmpG and ii) the Opp ATP binding cassette transporter in conjunction with a PG-specific periplasmic binding protein, MppA. The contribution of each transporter to PG recycling has been debated. Here, we have found that AmpG and MppA/Opp are differentially regulated by carbon source and growth phase. In addition, MppA/Opp is uniquely capable of high-affinity scavenging of muropeptides from growth media, demonstrating that AmpG and MppA/Opp allow for different strategies of recycling PG fragments. Altogether, this work clarifies environmental contexts under which E. coli utilizes distinct permeases for PG recycling and explores how scavenging by MppA/Opp could be beneficial in mixed communities.


Subject(s)
Escherichia coli , Membrane Transport Proteins , Membrane Transport Proteins/metabolism , Escherichia coli/metabolism , Peptidoglycan/metabolism , Bacterial Proteins/metabolism , Bacteria/metabolism , Cell Wall/metabolism
3.
J Bacteriol ; 205(5): e0006723, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37070977

ABSTRACT

Gram-negative bacteria have a unique cell surface that can be modified to maintain bacterial fitness in diverse environments. A well-defined example is the modification of the lipid A component of lipopolysaccharide (LPS), which promotes resistance to polymyxin antibiotics and antimicrobial peptides. In many organisms, such modifications include the addition of the amine-containing constituents 4-amino-4-deoxy-l-arabinose (l-Ara4N) and phosphoethanolamine (pEtN). Addition of pEtN is catalyzed by EptA, which uses phosphatidylethanolamine (PE) as its substrate donor, resulting in production of diacylglycerol (DAG). DAG is then quickly recycled into glycerophospholipid (GPL) synthesis by the DAG kinase A (DgkA) to produce phosphatidic acid, the major GPL precursor. Previously, we hypothesized that loss of DgkA recycling would be detrimental to the cell when LPS is heavily modified. Instead, we found that DAG accumulation inhibits EptA activity, preventing further degradation of PE, the predominant GPL of the cell. However, DAG inhibition of pEtN addition results in complete loss of polymyxin resistance. Here, we selected for suppressors to find a mechanism of resistance independent of DAG recycling or pEtN modification. Disrupting the gene encoding the adenylate cyclase, cyaA, fully restored antibiotic resistance without restoring DAG recycling or pEtN modification. Supporting this, disruptions of genes that reduce CyaA-derived cAMP formation (e.g., ptsI) or disruption of the cAMP receptor protein, Crp, also restored resistance. We found that loss of the cAMP-CRP regulatory complex was necessary for suppression and that resistance arises from a substantial increase in l-Ara4N-modified LPS, bypassing the need for pEtN modification. IMPORTANCE Gram-negative bacteria can alter the structure of their LPS to promote resistance to cationic antimicrobial peptides, including polymyxin antibiotics. Polymyxins are considered last-resort antibiotics for treatment against multidrug-resistant Gram-negative organisms. Here, we explore how changes in general metabolism and carbon catabolite repression pathways can alter LPS structure and influence polymyxin resistance.


Subject(s)
Lipopolysaccharides , Polymyxin B , Polymyxin B/pharmacology , Lipopolysaccharides/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Cyclic AMP Receptor Protein/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Polymyxins/pharmacology , Lipid A/chemistry , Drug Resistance, Bacterial/genetics
4.
mBio ; 12(6): e0309921, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34844428

ABSTRACT

Gram-negative bacteria resist external stresses due to cell envelope rigidity, which is provided by two membranes and a peptidoglycan layer. The outer membrane (OM) surface contains lipopolysaccharide (LPS; contains O-antigen) or lipooligosaccharide (LOS). LPS/LOS are essential in most Gram-negative bacteria and may contribute to cellular rigidity. Acinetobacter baumannii is a useful tool for testing these hypotheses as it can survive without LOS. Previously, our group found that strains with naturally high levels of penicillin binding protein 1A (PBP1A) could not become LOS deficient unless the gene encoding it was deleted, highlighting the relevance of peptidoglycan biosynthesis and suggesting that high PBP1A levels were toxic during LOS deficiency. Transposon sequencing and follow-up analysis found that axial peptidoglycan synthesis by the elongasome and a peptidoglycan recycling enzyme, ElsL, were vital in LOS-deficient cells. The toxicity of high PBP1A levels during LOS deficiency was clarified to be due to a negative impact on elongasome function. Our data suggest that during LOS deficiency, the strength of the peptidoglycan specifically imparted by elongasome synthesis becomes essential, supporting that the OM and peptidoglycan contribute to cell rigidity. IMPORTANCE Gram-negative bacteria have a multilayered cell envelope with a layer of cross-linked polymers (peptidoglycan) sandwiched between two membranes. Peptidoglycan was long thought to exclusively provide rigidity to the cell providing mechanical strength. Recently, the most outer membrane of the cell was also proposed to contribute to rigidity due to properties of a unique molecule called lipopolysaccharide (LPS). LPS is located on the cell surface in the outer membrane and is typically required for growth. By using Acinetobacter baumannii, a Gram-negative bacterium that can grow without LPS, we found that key features of the peptidoglycan structure also become essential. This finding supports that both the outer membrane and peptidoglycan contribute to cell rigidity.


Subject(s)
Acinetobacter baumannii/growth & development , Acinetobacter baumannii/metabolism , Bacterial Outer Membrane/metabolism , Lipopolysaccharides/biosynthesis , Peptidoglycan/biosynthesis , Acinetobacter baumannii/chemistry , Acinetobacter baumannii/genetics , Bacterial Outer Membrane/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lipopolysaccharides/chemistry , Penicillin-Binding Proteins/genetics , Penicillin-Binding Proteins/metabolism , Peptidoglycan/chemistry , Periplasm/chemistry , Periplasm/genetics , Periplasm/metabolism
5.
J Bacteriol ; 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33361195

ABSTRACT

The cell surface of the Gram-negative cell envelope contains lipopolysaccharide (LPS) molecules, which form a permeability barrier against hydrophobic antibiotics. The LPS transport (Lpt) machine composed of LptB2FGCADE forms a proteinaceous trans-envelope bridge that allows for the rapid and specific transport of newly synthesized LPS from the inner membrane (IM) to the outer membrane (OM). This transport is powered from the IM by the ATP-binding cassette transporter LptB2FGC. The ATP-driven cycling between closed- and open-dimer states of the ATPase LptB2 is coupled to the extraction of LPS by the transmembrane domains LptFG. However, the mechanism by which LPS moves from a substrate-binding cavity formed by LptFG at the IM to the first component of the periplasmic bridge, the periplasmic ß-jellyroll domain of LptF, is poorly understood. To better understand how LptB2FGC functions in Escherichia coli, we searched for suppressors of a defective LptB variant. We found that defects in LptB2 can be suppressed by both structural modifications to the core oligosaccharide of LPS and changes in various regions of LptFG, including a periplasmic loop in LptF that connects the substrate-binding cavity in LptFG to the periplasmic ß-jellyroll domain of LptF. These novel suppressors suggest that interactions between the core oligosaccharide of LPS and periplasmic regions in the transporter influence the rate of LPS extraction by LptB2FGC. Together, our genetic data reveal a path for the bi-directional coupling between LptB2 and LptFG that extends from the cytoplasm to the entrance to the periplasmic bridge of the transporter.IMPORTANCEGram-negative bacteria are intrinsically resistant to many antibiotics due to the presence of lipopolysaccharide (LPS) at their cell surface. LPS is transported from its site of synthesis at the inner membrane to the outer membrane by the Lpt machine. Lpt proteins form a transporter that spans the entire envelope and is thought to function similarly to a PEZ candy dispenser. This trans-envelope machine is powered by the cytoplasmic LptB ATPase through a poorly understood mechanism. Using genetic analyses in Escherichia coli, we found that LPS transport involves long-ranging bi-directional coupling across cellular compartments between cytoplasmic LptB and periplasmic regions of the Lpt transporter. This knowledge could be exploited in developing antimicrobials that overcome the permeability barrier imposed by LPS.

6.
mBio ; 11(6)2020 12 15.
Article in English | MEDLINE | ID: mdl-33323515

ABSTRACT

Gram-negative bacteria produce an asymmetric outer membrane (OM) that is particularly impermeant to many antibiotics and characterized by lipopolysaccharide (LPS) exclusively at the cell surface. LPS biogenesis remains an ideal target for therapeutic intervention, as disruption could kill bacteria or increase sensitivity to existing antibiotics. While it has been known that LPS synthesis is regulated by proteolytic control of LpxC, the enzyme that catalyzes the first committed step of LPS synthesis, it remains unknown which signals direct this regulation. New details have been revealed during study of a cryptic essential inner membrane protein, YejM. Multiple functions have been proposed over the years for YejM, including a controversial hypothesis that it transports cardiolipin from the inner membrane to the OM. Strong evidence now indicates that YejM senses LPS in the periplasm and directs proteolytic regulation. Here, we discuss the standing literature of YejM and highlight exciting new insights into cell envelope maintenance.


Subject(s)
Bacteria/metabolism , Bacterial Outer Membrane Proteins/metabolism , Lipopolysaccharides/biosynthesis , Bacteria/genetics , Bacterial Outer Membrane Proteins/genetics , Gene Expression Regulation, Bacterial
7.
Elife ; 92020 09 03.
Article in English | MEDLINE | ID: mdl-32880370

ABSTRACT

The asymmetric outer membrane (OM) of Gram-negative bacteria functions as a selective permeability barrier to the environment. Perturbations to OM lipid asymmetry sensitize the cell to antibiotics. As such, mechanisms involved in lipid asymmetry are fundamental to our understanding of OM lipid homeostasis. One such mechanism, the Maintenance of lipid asymmetry (Mla) pathway has been proposed to extract mislocalized glycerophospholipids from the outer leaflet of the OM and return them to the inner membrane (IM). Work on this pathway in Acinetobacter baumannii support conflicting models for the directionality of the Mla system being retrograde (OM to IM) or anterograde (IM to OM). Here, we show conclusively that A. baumannii mla mutants exhibit no defects in anterograde transport. Furthermore, we identify an allele of the GTPase obgE that is synthetically sick in the absence of Mla; providing another link between cell envelope homeostasis and stringent response.


Subject(s)
Acinetobacter baumannii , Bacterial Outer Membrane Proteins , Biological Transport , Membrane Lipids , Bacterial Outer Membrane/chemistry , Bacterial Outer Membrane/enzymology , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Biological Transport/genetics , Biological Transport/physiology , Glycerophospholipids/chemistry , Glycerophospholipids/metabolism , Homeostasis/genetics , Homeostasis/physiology , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Mutation , Signal Transduction/genetics , Signal Transduction/physiology
8.
Mol Microbiol ; 114(2): 200-213, 2020 08.
Article in English | MEDLINE | ID: mdl-32236984

ABSTRACT

Lipopolysaccharides (LPS) are essential envelope components in many Gram-negative bacteria and provide intrinsic resistance to antibiotics. LPS molecules are synthesized in the inner membrane and then transported to the cell surface by the LPS transport (Lpt) machinery. In this system, the ATP-binding cassette (ABC) transporter LptB2 FGC extracts LPS from the inner membrane and places it onto a periplasmic protein bridge through a poorly understood mechanism. Here, we show that residue E86 of LptB is essential for coupling the function of this ATPase to that of its partners LptFG, specifically at the step where ATP binding drives the closure of the LptB dimer and the collapse of the LPS-binding cavity in LptFG that moves LPS to the Lpt periplasmic bridge. We also show that defects caused by changing residue E86 are suppressed by mutations altering either LPS structure or transmembrane helices in LptG. Furthermore, these suppressors also fix defects in the coupling helix of LptF, but not of LptG. Together, these results support a transport mechanism in which the ATP-driven movements of LptB and those of the substrate-binding cavity in LptFG are bi-directionally coordinated through the rigid-body coupling, with LptF's coupling helix being important in coordinating cavity collapse with LptB dimerization.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Escherichia coli Proteins/metabolism , ATP-Binding Cassette Transporters/physiology , Adenosine Triphosphatases/metabolism , Biological Transport , Cell Membrane/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/physiology , Lipopolysaccharides/metabolism , Membrane Proteins/metabolism , Membrane Proteins/physiology , Membrane Transport Proteins/metabolism , Periplasm/metabolism
9.
mBio ; 10(4)2019 08 20.
Article in English | MEDLINE | ID: mdl-31431556

ABSTRACT

ATP-binding cassette (ABC) transporters constitute a large family of proteins present in all domains of life. They are powered by dynamic ATPases that harness energy from binding and hydrolyzing ATP through a cycle that involves the closing and reopening of their two ATP-binding domains. The LptB2FGC exporter is an essential ABC transporter that assembles lipopolysaccharides (LPS) on the surface of Gram-negative bacteria to form a permeability barrier against many antibiotics. LptB2FGC extracts newly synthesized LPS molecules from the inner membrane and powers their transport across the periplasm and through the outer membrane. How LptB2FGC functions remains poorly understood. Here, we show that the C-terminal domain of the dimeric LptB ATPase is essential for LPS transport in Escherichia coli Specific changes in the C-terminal domain of LptB cause LPS transport defects that can be repaired by intragenic suppressors altering the ATP-binding domains. Surprisingly, we found that each of two lethal changes in the ATP-binding and C-terminal domains of LptB, when present in combined form, suppressed the defects associated with the other to restore LPS transport to wild-type levels both in vivo and in vitro We present biochemical evidence explaining the effect that each of these mutations has on LptB function and how the observed cosuppression results from the opposing lethal effects these changes have on the dimerization state of the LptB ATPase. We therefore propose that these sites modulate the closing and reopening of the LptB dimer, providing insight into how the LptB2FGC transporter cycles to export LPS to the cell surface and how to inhibit this essential envelope biogenesis process.IMPORTANCE Gram-negative bacteria are naturally resistant to many antibiotics because their surface is covered by the glycolipid LPS. Newly synthesized LPS is transported across the cell envelope by the multiprotein Lpt machinery, which includes LptB2FGC, an unusual ABC transporter that extracts LPS from the inner membrane. Like in other ABC transporters, the LptB2FGC transport cycle is driven by the cyclical conformational changes that a cytoplasmic, dimeric ATPase, LptB, undergoes when binding and hydrolyzing ATP. How these conformational changes are controlled in ABC transporters is poorly understood. Here, we identified two lethal changes in LptB that, when combined, remarkably restore wild-type transport function. Biochemical studies revealed that the two changes affect different steps in the transport cycle, having opposing, lethal effects on LptB's dimerization cycle. Our work provides mechanistic details about the LptB2FGC extractor that could be used to develop Lpt inhibitors that would overcome the innate antibiotic resistance of Gram-negative bacteria.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Lipopolysaccharides/metabolism , Mutation , ATP-Binding Cassette Transporters/chemistry , Adenosine Triphosphatases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biological Transport , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cell Membrane/metabolism , Escherichia coli Proteins/chemistry , Hydrolysis , Periplasm/metabolism , Protein Domains , X-Ray Diffraction
10.
mBio ; 10(3)2019 06 25.
Article in English | MEDLINE | ID: mdl-31239385

ABSTRACT

Outer membrane biogenesis is a complex process for Gram-negative bacteria as the components are synthesized in the cytoplasm or at the inner membrane and then transported to the outer membrane. Stress pathways monitor and respond to problems encountered in assembling the outer membrane. The two-component system CpxAR was recently reported to be a stress pathway for transport of lipoproteins to the outer membrane, but it was unclear how this stress is sensed. May et al. [K. L. May, K. M. Lehman, A. M. Mitchell, and M. Grabowicz, mBio 10(3):e00618-19, 2019, https://doi.org/10.1128/mBio.00618-19] determined that an outer membrane lipoprotein, NlpE, is the sensor for lipoprotein biogenesis stress. The group demonstrated that CpxAR is activated by the N-terminal domain of NlpE when the lipoprotein accumulates at the inner membrane. Further, this work resolved a previously debated role for NlpE in sensing copper stress; copper was shown to inhibit acylation of lipoproteins, preventing them from being transported to the outer membrane.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Bacterial Outer Membrane Proteins , Lipoproteins , Protein Transport
11.
Nat Rev Microbiol ; 17(7): 403-416, 2019 07.
Article in English | MEDLINE | ID: mdl-31142822

ABSTRACT

The defining feature of the Gram-negative cell envelope is the presence of two cellular membranes, with the specialized glycolipid lipopolysaccharide (LPS) exclusively found on the surface of the outer membrane. The surface layer of LPS contributes to the stringent permeability properties of the outer membrane, which is particularly resistant to permeation of many toxic compounds, including antibiotics. As a common surface antigen, LPS is recognized by host immune cells, which mount defences to clear pathogenic bacteria. To alter properties of the outer membrane or evade the host immune response, Gram-negative bacteria chemically modify LPS in a wide variety of ways. Here, we review key features and physiological consequences of LPS biogenesis and modifications.


Subject(s)
Bacterial Outer Membrane/chemistry , Bacterial Outer Membrane/metabolism , Gram-Negative Bacteria/chemistry , Gram-Negative Bacteria/metabolism , Lipopolysaccharides/chemistry , Lipopolysaccharides/metabolism , Animals , Bacterial Outer Membrane/immunology , Endotoxins/chemistry , Endotoxins/immunology , Endotoxins/metabolism , Gram-Negative Bacteria/immunology , Humans , Immunity, Cellular , Immunity, Humoral , Lipopolysaccharides/immunology , Permeability
12.
J Am Chem Soc ; 139(48): 17221-17224, 2017 12 06.
Article in English | MEDLINE | ID: mdl-29135241

ABSTRACT

Novobiocin is an orally active antibiotic that inhibits DNA gyrase by binding the ATP-binding site in the ATPase subunit. Although effective against Gram-positive pathogens, novobiocin has limited activity against Gram-negative organisms due to the presence of the lipopolysaccharide-containing outer membrane, which acts as a permeability barrier. Using a novobiocin-sensitive Escherichia coli strain with a leaky outer membrane, we identified a mutant with increased resistance to novobiocin. Unexpectedly, the mutation that increases novobiocin resistance was not found to alter gyrase, but the ATPase that powers lipopolysaccharide (LPS) transport. Co-crystal structures, biochemical, and genetic evidence show novobiocin directly binds this ATPase. Novobiocin does not bind the ATP binding site but rather the interface between the ATPase subunits and the transmembrane subunits of the LPS transporter. This interaction increases the activity of the LPS transporter, which in turn alters the permeability of the outer membrane. We propose that novobiocin will be a useful tool for understanding how ATP hydrolysis is coupled to LPS transport.


Subject(s)
Adenosine Triphosphatases/metabolism , Anti-Bacterial Agents/metabolism , Lipopolysaccharides/metabolism , Novobiocin/metabolism , Novobiocin/pharmacology , Adenosine Triphosphate/metabolism , Binding Sites , Biological Transport/drug effects , DNA Gyrase/metabolism , Enzyme Activation/drug effects , Escherichia coli/drug effects , Escherichia coli/enzymology , Escherichia coli/genetics , Hydrolysis/drug effects
13.
mBio ; 7(5)2016 10 18.
Article in English | MEDLINE | ID: mdl-27795402

ABSTRACT

The surface of most Gram-negative bacteria is covered with lipopolysaccharide (LPS), creating a permeability barrier against toxic molecules, including many antimicrobials. To assemble LPS on their surface, Gram-negative bacteria must extract newly synthesized LPS from the inner membrane, transport it across the aqueous periplasm, and translocate it across the outer membrane. The LptA to -G proteins assemble into a transenvelope complex that transports LPS from the inner membrane to the cell surface. The Lpt system powers LPS transport from the inner membrane by using a poorly characterized ATP-binding cassette system composed of the ATPase LptB and the transmembrane domains LptFG. Here, we characterize a cluster of residues in the groove region of LptB that is important for controlling LPS transport. We also provide the first functional characterization of LptFG and identify their coupling helices that interact with the LptB groove. Substitutions at conserved residues in these coupling helices compromise both the assembly and function of the LptB2FG complex. Defects in LPS transport conferred by alterations in the LptFG coupling helices can be rescued by changing a residue in LptB that is adjacent to functionally important residues in the groove region. This suppression is achieved by increasing the ATPase activity of the LptB2FG complex. Taken together, these data identify a specific binding site in LptB for the coupling helices of LptFG that is responsible for coupling of ATP hydrolysis by LptB with LptFG function to achieve LPS extraction. IMPORTANCE: Lipopolysaccharide (LPS) is synthesized at the cytoplasmic membrane of Gram-negative bacteria and transported across several compartments to the cell surface, where it forms a barrier that protects these organisms from antibiotics. The LptB2FG proteins form an ATP-binding cassette (ABC) transporter that uses energy from ATP hydrolysis in the cytoplasm to facilitate extraction of LPS from the outer face of the cytoplasmic membrane prior to transport to the cell surface. How ATP hydrolysis is coupled with LPS release from the membrane is not understood. We have identified residues at the interface between the ATPase and the transmembrane domains of this heteromeric ABC complex that are important for LPS transport, some of which coordinate ATPase activity with LPS release.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphatases/genetics , Escherichia coli Proteins/metabolism , Lipopolysaccharides/metabolism , ATP-Binding Cassette Transporters/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Substitution , Biological Transport, Active , DNA Mutational Analysis , Escherichia coli Proteins/genetics , Hydrolysis , Mutagenesis, Site-Directed , Protein Multimerization
14.
Philos Trans R Soc Lond B Biol Sci ; 370(1679)2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26370939

ABSTRACT

Gram-negative bacteria possess an outer membrane (OM) containing lipopolysaccharide (LPS). Proper assembly of the OM not only prevents certain antibiotics from entering the cell, but also allows others to be pumped out. To assemble this barrier, the seven-protein lipopolysaccharide transport (Lpt) system extracts LPS from the outer leaflet of the inner membrane (IM), transports it across the periplasm and inserts it selectively into the outer leaflet of the OM. As LPS is important, if not essential, in most Gram-negative bacteria, the LPS biosynthesis and biogenesis pathways are attractive targets in the development of new classes of antibiotics. The accompanying paper (Simpson BW, May JM, Sherman DJ, Kahne D, Ruiz N. 2015 Phil. Trans. R. Soc. B 370, 20150029. (doi:10.1098/rstb.2015.0029)) reviewed the biosynthesis of LPS and its extraction from the IM. This paper will trace its journey across the periplasm and insertion into the OM.


Subject(s)
Cell Membrane/metabolism , Gram-Negative Bacteria/metabolism , Lipopolysaccharides/metabolism , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biological Transport, Active , Membrane Lipids/metabolism , Models, Biological , Models, Molecular , Periplasm/metabolism
15.
Philos Trans R Soc Lond B Biol Sci ; 370(1679)2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26370941

ABSTRACT

The cell surface of most Gram-negative bacteria is covered with lipopolysaccharide (LPS). The network of charges and sugars provided by the dense packing of LPS molecules in the outer leaflet of the outer membrane interferes with the entry of hydrophobic compounds into the cell, including many antibiotics. In addition, LPS can be recognized by the immune system and plays a crucial role in many interactions between bacteria and their animal hosts. LPS is synthesized in the inner membrane of Gram-negative bacteria, so it must be transported across their cell envelope to assemble at the cell surface. Over the past two decades, much of the research on LPS biogenesis has focused on the discovery and understanding of Lpt, a multi-protein complex that spans the cell envelope and functions to transport LPS from the inner membrane to the outer membrane. This paper focuses on the early steps of the transport of LPS by the Lpt machinery: the extraction of LPS from the inner membrane. The accompanying paper (May JM, Sherman DJ, Simpson BW, Ruiz N, Kahne D. 2015 Phil. Trans. R. Soc. B 370, 20150027. (doi:10.1098/rstb.2015.0027)) describes the subsequent steps as LPS travels through the periplasm and the outer membrane to its final destination at the cell surface.


Subject(s)
Cell Membrane/metabolism , Gram-Negative Bacteria/metabolism , Lipopolysaccharides/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biological Transport, Active , Energy Metabolism , Lipopolysaccharides/biosynthesis , Membrane Proteins/metabolism , Models, Biological , Models, Molecular , Phospholipid Transfer Proteins/chemistry , Phospholipid Transfer Proteins/metabolism , Protein Conformation
16.
ACS Chem Biol ; 8(2): 451-63, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23181457

ABSTRACT

Artificial proteins that bind key metabolites with high affinity and specificity hold great promise as new tools in synthetic biology, but little has been done to create such molecules and examine their effects on living cells. Experiments of this kind have the potential to expand our understanding of cellular systems, as certain phenotypes may be physically realistic but not yet observed in nature. Here, we examine the physiology and morphology of a population of Escherichia coli as they respond to a genetically encoded, non-biological ATP-binding protein. Unlike natural ATP-dependent proteins, which transiently bind ATP during metabolic transformations, the synthetic protein DX depletes the concentration of intracellular ATP and ADP by a mechanism of protein-mediated ligand sequestration. The resulting ATP/ADP imbalance leads to an adaptive response in which a large population of bacilli cells transition to a filamentous state with dense lipid structures that segregate the cells into compartmentalized units. A wide range of biochemical and microscopy techniques extensively characterized these novel lipid structures, which we have termed endoliposomes. We show that endoliposomes adopt well-defined box-like structures that span the full width of the cell but exclude the synthetic protein DX. We further show that prolonged DX exposure causes a large fraction of the population to enter a viable-but-non-culturable state that is not easily reversed. Both phenotypes correlate with strong intracellular changes in ATP and ADP concentration. We suggest that artificial proteins, such as DX, could be used to control and regulate specific targets in metabolic pathways.


Subject(s)
Adenosine Triphosphatases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Escherichia coli/metabolism , Bacterial Proteins/biosynthesis , Carrier Proteins/biosynthesis , Escherichia coli/genetics , Escherichia coli/growth & development , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...