Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36365868

ABSTRACT

Motion capture is the current gold standard for assessing movement of the human body, but laboratory settings do not always mimic the natural terrains and movements encountered by humans. To overcome such limitations, a smart sock that is equipped with stretch sensors is being developed to record movement data outside of the laboratory. For the smart sock stretch sensors to provide valuable feedback, the sensors should have durability of both materials and signal. To test the durability of the stretch sensors, the sensors were exposed to high-cycle fatigue testing with simultaneous capture of the capacitance. Following randomization, either the fatigued sensor or an unfatigued sensor was placed in the plantarflexion position on the smart sock, and participants were asked to complete the following static movements: dorsiflexion, inversion, eversion, and plantarflexion. Participants were then asked to complete gait trials. The sensor was then exchanged for either an unfatigued or fatigued plantarflexion sensor, depending upon which sensor the trials began with, and each trial was repeated by the participant using the opposite sensor. Results of the tests show that for both the static and dynamic movements, the capacitive output of the fatigued sensor was consistently higher than that of the unfatigued sensor suggesting that an upwards drift of the capacitance was occurring in the fatigued sensors. More research is needed to determine whether stretch sensors should be pre-stretched prior to data collection, and to also determine whether the drift stabilizes once the cyclic softening of the materials comprising the sensor has stabilized.


Subject(s)
Ankle , Movement , Humans , Ankle Joint , Motion , Gait , Biomechanical Phenomena
2.
Materials (Basel) ; 14(15)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34361264

ABSTRACT

Standards for the fatigue testing of wearable sensing technologies are lacking. The majority of published fatigue tests for wearable sensors are performed on proof-of-concept stretch sensors fabricated from a variety of materials. Due to their flexibility and stretchability, polymers are often used in the fabrication of wearable sensors. Other materials, including textiles, carbon nanotubes, graphene, and conductive metals or inks, may be used in conjunction with polymers to fabricate wearable sensors. Depending on the combination of the materials used, the fatigue behaviors of wearable sensors can vary. Additionally, fatigue testing methodologies for the sensors also vary, with most tests focusing only on the low-cycle fatigue (LCF) regime, and few sensors are cycled until failure or runout are achieved. Fatigue life predictions of wearable sensors are also lacking. These issues make direct comparisons of wearable sensors difficult. To facilitate direct comparisons of wearable sensors and to move proof-of-concept sensors from "bench to bedside", fatigue testing standards should be established. Further, both high-cycle fatigue (HCF) and failure data are needed to determine the appropriateness in the use, modification, development, and validation of fatigue life prediction models and to further the understanding of how cracks initiate and propagate in wearable sensing technologies.

3.
Molecules ; 26(12)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203711

ABSTRACT

Inflammation and stiffness in the arteries is referred to as vascular calcification. This process is a prevalent yet poorly understood consequence of cardiovascular disease and diabetes mellitus, comorbidities with few treatments clinically available. Because this is an active process similar to bone formation, it is hypothesized that osteoclasts (OCs), bone-resorbing cells in the body, could potentially work to reverse existing calcification by resorbing bone material. The receptor activator of nuclear kappa B-ligand (RANKL) is a molecule responsible for triggering a response in monocytes and macrophages that allows them to differentiate into functional OCs. In this study, OC and RANKL delivery were employed to determine whether calcification could be attenuated. OCs were either delivered via direct injection, collagen/alginate microbeads, or collagen gel application, while RANKL was delivered via injection, through either a porcine subdermal model or aortic injury model. While in vitro results yielded a decrease in calcification using OC therapy, in vivo delivery mechanisms did not provide control or regulation to keep cells localized long enough to induce calcification reduction. However, these results do provide context and direction for the future of OC therapy, revealing necessary steps for this treatment to effectively reduce calcification in vivo. The discrepancy between in vivo and in vitro success for OC therapy points to the need for a more stable and time-controlled delivery mechanism that will allow OCs not only to remain at the site of calcification, but also to be regulated so that they are healthy and functioning normally when introduced to diseased tissue.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Osteoclasts/physiology , Vascular Calcification/therapy , Animals , Bone Resorption/metabolism , Carrier Proteins/pharmacology , Cell Differentiation/drug effects , Cells, Cultured , Elastin/metabolism , Elastin/physiology , Macrophages/metabolism , Male , Membrane Glycoproteins , Monocytes/metabolism , Myocytes, Smooth Muscle/metabolism , Osteoclasts/metabolism , Osteogenesis/drug effects , RANK Ligand/metabolism , RANK Ligand/pharmacology , Rats , Rats, Sprague-Dawley , Receptor Activator of Nuclear Factor-kappa B/metabolism , Swine , Vascular Calcification/metabolism
4.
Cardiovasc Pathol ; 16(1): 29-37, 2007.
Article in English | MEDLINE | ID: mdl-17218212

ABSTRACT

BACKGROUND: Elastin-oriented vascular calcification is a clinically significant feature, which involves formation of ectopic bone-like structures. Taking advantage of the similarities between arterial calcification and bone regulation, our hypothesis was that therapeutic approaches for limitation of vascular calcification could be developed using site-specific delivery of autologous osteoclasts. In the present paper, we tested the hypothesis that bone-marrow-derived osteoclasts have the ability to demineralize calcified elastin, without significant alterations in elastin integrity. METHODS: Active, multinucleated osteoclasts were obtained by in vitro maturation of rat bone-marrow-derived progenitor cells in the presence of vitamin D(3) and retinoic acid. Cell phenotype was validated by staining for tartrate-resistant acid phosphatase, formation of resorption pits on hydroxyapatite-coated disks, and RT-PCR for identification of cathepsin K gene expression. Calcified aortic elastin was seeded with osteoclasts and calcium, and phosphorous levels were monitored in gels and culture media to detect demineralization of elastin. Soluble elastin peptides were also monitored in culture media for elastin degradation. For in vivo experiments, pure aortic elastin was coimplanted with allogenic osteoclasts subdermally into rats, and the degree of elastin calcification and degradation was evaluated using mineral analysis and desmosine quantitation. RESULTS: Bone-marrow-derived osteoclasts reduced mineral content of calcified elastin in vitro by 80%. Moreover, in vivo implantation of allogenic osteoclasts in the vicinity of calcifying elastin limited elastin mineralization by almost 50%, in the absence of detectable elastin degradation. CONCLUSIONS: Osteoclasts have the ability to demineralize calcified elastin, without significant alterations in elastin integrity.


Subject(s)
Bone Marrow Cells/cytology , Calcinosis/metabolism , Elastin/metabolism , Osteoclasts/metabolism , Animals , Calcinosis/pathology , Cathepsin K , Cathepsins/genetics , Cathepsins/metabolism , Cell Transplantation , Cells, Cultured , Cholecalciferol/pharmacology , Disease Models, Animal , Drug Combinations , Elastin/chemistry , Gene Expression/drug effects , Osteoclasts/transplantation , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Tretinoin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL