Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Hortic Res ; 10(12): uhad217, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38130599

ABSTRACT

The Hydrangea genus belongs to the Hydrangeaceae family, in the Cornales order of flowering plants, which early diverged among the Asterids, and includes several species that are commonly used ornamental plants. Of them, Hydrangea macrophylla is one of the most valuable species in the nursery trade, yet few genomic resources are available for this crop or closely related Asterid species. Two high-quality haplotype-resolved reference genomes of hydrangea cultivars 'Veitchii' and 'Endless Summer' [highest quality at 2.22 gigabase pairs (Gb), 396 contigs, N50 22.8 megabase pairs (Mb)] were assembled and scaffolded into the expected 18 pseudochromosomes. Utilizing the newly developed high-quality reference genomes along with high-quality genomes of other related flowering plants, nuclear data were found to support a single divergence point in the Asterids clade where both the Cornales and Ericales diverged from the euasterids. Genetic mapping with an F1 hybrid population demonstrated the power of linkage mapping combined with the new genomic resources to identify the gene for inflorescence shape, CYP78A5 located on chromosome 4, and a novel gene, BAM3 located on chromosome 17, for causing double flower. Resources developed in this study will not only help to accelerate hydrangea genetic improvement but also contribute to understanding the largest group of flowering plants, the Asterids.

2.
Front Plant Sci ; 14: 1184112, 2023.
Article in English | MEDLINE | ID: mdl-38034563

ABSTRACT

As sequencing costs decrease and availability of high fidelity long-read sequencing increases, generating experiment specific de novo genome assemblies becomes feasible. In many crop species, obtaining the genome of a hybrid or heterozygous individual is necessary for systems that do not tolerate inbreeding or for investigating important biological questions, such as hybrid vigor. However, most genome assembly methods that have been used in plants result in a merged single sequence representation that is not a true biologically accurate representation of either haplotype within a diploid individual. The resulting genome assembly is often fragmented and exhibits a mosaic of the two haplotypes, referred to as haplotype-switching. Important haplotype level information, such as causal mutations and structural variation is therefore lost causing difficulties in interpreting downstream analyses. To overcome this challenge, we have applied a method developed for animal genome assembly called trio-binning to an intra-specific hybrid of chili pepper (Capsicum annuum L. cv. HDA149 x Capsicum annuum L. cv. HDA330). We tested all currently available softwares for performing trio-binning, combined with multiple scaffolding technologies including Bionano to determine the optimal method of producing the best haplotype-resolved assembly. Ultimately, we produced highly contiguous biologically true haplotype-resolved genome assemblies for each parent, with scaffold N50s of 266.0 Mb and 281.3 Mb, with 99.6% and 99.8% positioned into chromosomes respectively. The assemblies captured 3.10 Gb and 3.12 Gb of the estimated 3.5 Gb chili pepper genome size. These assemblies represent the complete genome structure of the intraspecific hybrid, as well as the two parental genomes, and show measurable improvements over the currently available reference genomes. Our manuscript provides a valuable guide on how to apply trio-binning to other plant genomes.

3.
BMC Genomics ; 24(1): 409, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37474911

ABSTRACT

BACKGROUND: Muscadine grape (Vitis rotundifolia) is resistant to many of the pathogens that negatively impact the production of common grape (V. vinifera), including the bacterial pathogen Xylella fastidiosa subsp. fastidiosa (Xfsf), which causes Pierce's Disease (PD). Previous studies in common grape have indicated Xfsf delays host immune response with a complex O-chain antigen produced by the wzy gene. Muscadine cultivars range from tolerant to completely resistant to Xfsf, but the mechanism is unknown. RESULTS: We assembled and annotated a new, long-read genome assembly for 'Carlos', a cultivar of muscadine that exhibits tolerance, to build upon the existing genetic resources available for muscadine. We used these resources to construct an initial pan-genome for three cultivars of muscadine and one cultivar of common grape. This pan-genome contains a total of 34,970 synteny-constrained entries containing genes of similar structure. Comparison of resistance gene content between the 'Carlos' and common grape genomes indicates an expansion of resistance (R) genes in 'Carlos.' We further identified genes involved in Xfsf response by transcriptome sequencing 'Carlos' plants inoculated with Xfsf. We observed 234 differentially expressed genes with functions related to lipid catabolism, oxidation-reduction signaling, and abscisic acid (ABA) signaling as well as seven R genes. Leveraging public data from previous experiments of common grape inoculated with Xfsf, we determined that most differentially expressed genes in the muscadine response were not found in common grape, and three of the R genes identified as differentially expressed in muscadine do not have an ortholog in the common grape genome. CONCLUSIONS: Our results support the utility of a pan-genome approach to identify candidate genes for traits of interest, particularly disease resistance to Xfsf, within and between muscadine and common grape.


Subject(s)
Vitis , Xylella , Vitis/microbiology , Disease Resistance/genetics , Xylella/genetics , Chromosomes , Plant Diseases/genetics , Plant Diseases/microbiology
4.
Front Plant Sci ; 13: 1073542, 2022.
Article in English | MEDLINE | ID: mdl-36777543

ABSTRACT

Introduction: Virginia-type peanut, Arachis hypogaea subsp. hypogaea, is the second largest market class of peanut cultivated in the United States. It is mainly used for large-seeded, in-shell products. Historically, Virginia-type peanut cultivars were developed through long-term recurrent phenotypic selection and wild species introgression projects. Contemporary genomic technologies represent a unique opportunity to revolutionize the traditional breeding pipeline. While there are genomic tools available for wild and cultivated peanuts, none are tailored specifically to applied Virginia-type cultivar development programs. Methods and respective results: Here, the first Virginia-type peanut reference genome, "Bailey II", was assembled. It has improved contiguity and reduced instances of manual curation in chromosome arms. Whole-genome sequencing and marker discovery was conducted on 66 peanut lines which resulted in 1.15 million markers. The high marker resolution achieved allowed 34 unique wild species introgression blocks to be cataloged in the A. hypogaea genome, some of which are known to confer resistance to one or more pathogens. To enable marker-assisted selection of the blocks, 111 PCR Allele Competitive Extension assays were designed. Forty thousand high quality markers were selected from the full set that are suitable for mid-density genotyping for genomic selection. Genomic data from representative advanced Virginia-type peanut lines suggests this is an appropriate base population for genomic selection. Discussion: The findings and tools produced in this research will allow for rapid genetic gain in the Virginia-type peanut population. Genomics-assisted breeding will allow swift response to changing biotic and abiotic threats, and ultimately the development of superior cultivars for public use and consumption.

5.
PLoS Genet ; 17(3): e1009389, 2021 03.
Article in English | MEDLINE | ID: mdl-33735256

ABSTRACT

The genetic basis of general plant vigor is of major interest to food producers, yet the trait is recalcitrant to genetic mapping because of the number of loci involved, their small effects, and linkage. Observations of heterosis in many crops suggests that recessive, malfunctioning versions of genes are a major cause of poor performance, yet we have little information on the mutational spectrum underlying these disruptions. To address this question, we generated a long-read assembly of a tropical japonica rice (Oryza sativa) variety, Carolina Gold, which allowed us to identify structural mutations (>50 bp) and orient them with respect to their ancestral state using the outgroup, Oryza glaberrima. Supporting prior work, we find substantial genome expansion in the sativa branch. While transposable elements (TEs) account for the largest share of size variation, the majority of events are not directly TE-mediated. Tandem duplications are the most common source of insertions and are highly enriched among 50-200bp mutations. To explore the relative impact of various mutational classes on crop fitness, we then track these structural events over the last century of US rice improvement using 101 resequenced varieties. Within this material, a pattern of temporary hybridization between medium and long-grain varieties was followed by recent divergence. During this long-term selection, structural mutations that impact gene exons have been removed at a greater rate than intronic indels and single-nucleotide mutations. These results support the use of ab initio estimates of mutational burden, based on structural data, as an orthogonal predictor in genomic selection.


Subject(s)
Genes, Plant , Mutation , Oryza/genetics , Plant Breeding , Selection, Genetic , Crops, Agricultural/genetics , DNA Repair , DNA Transposable Elements , Environment , Gene-Environment Interaction , Genome, Plant , Hybridization, Genetic , INDEL Mutation , Seeds/genetics
6.
BMC Plant Biol ; 18(1): 170, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30111278

ABSTRACT

BACKGROUND: Aflatoxin contamination in peanut seeds is still a serious problem for the industry and human health. No stable aflatoxin resistant cultivars have yet been produced, and given the narrow genetic background of cultivated peanuts, wild species became an important source of genetic diversity. Wild peanut seeds, however, are not abundant, thus, an effective method of screening for aflatoxin accumulation using minimal seeds is highly desirable. In addition, keeping record of genetic fingerprinting of each accession would be very useful for breeding programs and for the identification of accessions within germplasm collections. RESULTS: In this study, we report a method of screening for aflatoxin accumulation that is applicable to the small-size seeds of wild peanuts, increases the reliability by testing seed viability, and records the genetic fingerprinting of the samples. Aflatoxin levels observed among 20 wild peanut species varied from zero to 19000 ng.g-1 and 155 ng.g-1 of aflatoxin B1 and B2, respectively. We report the screening of 373 molecular markers, including 288 novel SSRs, tested on 20 wild peanut species. Multivariate analysis by Neighbor-Joining, Principal Component Analysis and 3D-Principal Coordinate Analysis using 134 (36 %) transferable markers, in general grouped the samples according to their reported genomes. The best 88 markers, those with high fluorescence, good scorability and transferability, are reported with BLAST results. High quality markers (total 98) that discriminated genomes are reported. A high quality marker with UPIC score 16 (16 out of 20 species discriminated) had significant hits on BLAST2GO to a pentatricopeptide-repeat protein, another marker with score 5 had hits on UDP-D-apiose synthase, and a third one with score 12 had BLASTn hits on La-RP 1B protein. Together, these three markers discriminated all 20 species tested. CONCLUSIONS: This study provides a reliable method to screen wild species of peanut for aflatoxin resistance using minimal seeds. In addition we report 288 new SSRs for peanut, and a cost-effective combination of markers sufficient to discriminate all 20 species tested. These tools can be used for the systematic search of aflatoxin resistant germplasm keeping record of the genetic fingerprinting of the accessions tested for breeding purpose.


Subject(s)
Aflatoxins/metabolism , Arachis/genetics , DNA Fingerprinting/methods , Genetic Markers , Microsatellite Repeats , Aspergillus flavus/chemistry , DNA Fingerprinting/economics , Reproducibility of Results , Seed Bank , Seeds/metabolism , Seeds/microbiology
7.
Genome Announc ; 4(5)2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27587816

ABSTRACT

Transmissible colistin resistance in the form of an mcr-1-gene-bearing plasmid has been recently reported in Enterobacteriaceae in several parts of the world. We report here the completed genome sequence of an Escherichia coli strain isolated from swine in the United States that carried the mcr-1 gene on an IncI2-type plasmid.

8.
Molecules ; 20(6): 11400-17, 2015 Jun 22.
Article in English | MEDLINE | ID: mdl-26111173

ABSTRACT

Pouteria sapota is known for its edible fruits that contain unique carotenoids, as well as for its fungitoxic, anti-inflammatory and anti-oxidant activity. However, its genetics is mostly unknown, including aspects about its genetic diversity and domestication process. We did high-throughput sequencing of microsatellite-enriched libraries of P. sapota, generated 5223 contig DNA sequences, 1.8 Mbp, developed 368 microsatellites markers and tested them on 29 individuals from 10 populations (seven wild, three cultivated) from Mexico, its putative domestication center. Gene ontology BLAST analysis of the DNA sequences containing microsatellites showed potential association to physiological functions. Genetic diversity was slightly higher in cultivated than in the wild gene pool (HE = 0.41 and HE = 0.35, respectively), although modified Garza-Williamson Index and Bottleneck software showed evidence for a reduction in genetic diversity for the cultivated one. Neighbor Joining, 3D Principal Coordinates Analysis and assignment tests grouped most individuals according to their geographic origin but no clear separation was observed between wild or cultivated gene pools due to, perhaps, the existence of several admixed populations. The developed microsatellites have a great potential in genetic population and domestication studies of P. sapota but additional sampling will be necessary to better understand how the domestication process has impacted the genetic diversity of this fruit crop.


Subject(s)
High-Throughput Nucleotide Sequencing , Microsatellite Repeats/genetics , Polymorphism, Genetic , Pouteria/genetics , Genetic Variation , Genetics, Population , Humans , Mexico
SELECTION OF CITATIONS
SEARCH DETAIL
...