Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sol Phys ; 299(8): 120, 2024.
Article in English | MEDLINE | ID: mdl-39220341

ABSTRACT

The Solar eruptioN Integral Field Spectrograph (SNIFS) is a solar-gazing spectrograph scheduled to fly in the summer of 2025 on a NASA sounding rocket. Its goal is to view the solar chromosphere and transition region at a high cadence (1 s) both spatially ( 0.5 ″ ) and spectrally (33 mÅ) viewing wavelengths around Lyman alpha (1216 Å), Si iii (1206 Å), and O v (1218 Å) to observe spicules, nanoflares, and possibly a solar flare. This time cadence will provide yet-unobserved detail about fast-changing features of the Sun. The instrument is comprised of a Gregorian-style reflecting telescope combined with a spectrograph via a specialized mirrorlet array that focuses the light from each spatial location in the image so that it may be spectrally dispersed without overlap from neighboring locations. This paper discusses the driving science, detailed instrument and subsystem design, and preintegration testing of the SNIFS instrument.

2.
Accid Anal Prev ; 204: 107646, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38830295

ABSTRACT

Paramedics face various unconventional and secondary task demands while driving ambulances, leading to significant cognitive load, especially during lights-and-sirens responses. Previous research suggests that high cognitive load negatively affects driving performance, increasing the risk of accidents, particularly for inexperienced drivers. The current study investigated the impact of anticipatory treatment planning on cognitive load during emergency driving, as assessed through the use of a driving simulator. We recruited 28 non-paramedic participants to complete a simulated baseline drive with no task and a cognitive load manipulation using the 1-back task. We also recruited 18 paramedicine students who completed a drive while considering two cases they were travelling to: cardiac arrest and infant seizure, representing varying difficulty in required treatment. The results indicated that both cases imposed considerable cognitive load, as indicated by NASA Task Load Index responses, comparable to the 1-back task and significantly higher than driving with no load. These findings suggest that contemplating cases and treatment plans may impact the safety of novice paramedics driving ambulances for emergency response. Further research should explore the influence of experience and the presence of a second individual in the vehicle to generalise to broader emergency response driving contexts.


Subject(s)
Automobile Driving , Cognition , Humans , Male , Female , Automobile Driving/psychology , Adult , Young Adult , Seizures/psychology , Computer Simulation , Allied Health Personnel/education , Allied Health Personnel/psychology , Ambulances , Infant , Emergency Treatment , Task Performance and Analysis , Paramedicine
3.
Water Res X ; 10: 100086, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33398255

ABSTRACT

The World Health Organization (WHO) classified COVID-19 as a global pandemic, with the situation ultimately requiring unprecedented measures to mitigate the effects on public health and the global economy. Although SARS-CoV-2 (the virus responsible for COVID-19) is primarily respiratory in nature, multiple studies confirmed its genetic material could be detected in the feces of infected individuals, thereby highlighting sewage as a potential indicator of community incidence or prevalence. Numerous wastewater surveillance studies subsequently confirmed detection of SARS-CoV-2 RNA in wastewater and wastewater-associated solids/sludge. However, the methods employed in early studies vary widely so it is unclear whether differences in reported concentrations reflect true differences in epidemiological conditions, or are instead driven by methodological artifacts. The current study aimed to compare the performance of virus recovery and detection methods, detect and quantify SARS-CoV-2 genetic material in two Southern Nevada sewersheds from March-May 2020, and better understand the potential link between COVID-19 incidence/prevalence and wastewater concentrations of SARS-CoV-2 RNA. SARS-CoV-2 surrogate recovery (0.34%-55%) and equivalent sample volume (0.1 mL-1 L) differed between methods and target water matrices, ultimately impacting method sensitivity and reported concentrations. Composite sampling of influent and primary effluent resulted in a ∼10-fold increase in concentration relative to corresponding grab primary effluent samples, presumably highlighting diurnal variability in SARS-CoV-2 signal. Detection and quantification of four SARS-CoV-2 genetic markers (up to ∼106 gene copies per liter), along with ratios of SARS-CoV-2 to pepper mild mottle virus (PMMoV), exhibited comparability with public health data for two sewersheds in an early phase of the pandemic. Finally, a wastewater model informed by fecal shedding rates highlighted the potential significance of new cases (i.e., incidence rather than prevalence) when interpreting wastewater surveillance data.

SELECTION OF CITATIONS
SEARCH DETAIL