Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Microbiol Resour Announc ; 13(3): e0082123, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38349170

ABSTRACT

The complete coding sequence of a rabies lyssavirus (RABV) detected in a black bear (Ursus americanus) was generated. RNA extracted from brain tissues was amplified using reverse transcription followed by tiling PCR sequencing to obtain RABV whole viral genome. Sequencing was performed using an Illumina ISeq 100 instrument.

2.
J Wildl Dis ; 60(1): 193-197, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37924242

ABSTRACT

A SARS-CoV-2 genomic and serologic survey was performed in a population of bobcats (Lynx rufus) inhabiting the state of Connecticut, USA. Wild animal populations are becoming established in densely populated cities with increased likelihood of direct or indirect contact with humans, as well as with household cats and dogs. Wild-caught bobcats (n=38) tested negative for SARS-CoV-2 genomic RNA by reverse-transcription quantitative PCR and for virus-neutralizing antibodies by ELISA, suggesting that either the species is not susceptible to SARS-CoV-2 or that the surveyed population has not yet been exposed to a source of infectious virus. However, this limited survey cannot rule out that human-to-bobcat or unknown reservoir-to-bobcat transmission of the virus occurs in nature.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Lynx , Humans , Animals , Cats , Dogs , SARS-CoV-2 , Connecticut/epidemiology , Suburban Population , COVID-19/epidemiology , COVID-19/veterinary , Cat Diseases/epidemiology
4.
Viruses ; 13(12)2021 12 13.
Article in English | MEDLINE | ID: mdl-34960769

ABSTRACT

We performed whole genome sequencing and genetic characterization of rabies viruses (RABV) detected in bats submitted to the Connecticut Veterinary Medical Diagnostic Laboratory (CVMDL) during 2018-2019. Among 88 bats submitted to CVMDL, six brain samples (6.8%, 95% confidence interval: 1.6% to 12.1%) tested positive by direct fluorescent antibody test. RABVs were detected in big brown bats (Eptesicus fuscus, n = 4), a hoary bat (Lasiurus cinereus, n = 1), and an unidentified bat species (n = 1). Complete coding sequences of four out of six detected RABVs were obtained. In phylogenetic analysis, the RABVs (18-62, 18-4347, and 19-2274) from big brown bats belong to the bats EF-E1 clade, clustering with RABVs detected from the same bat species in Pennsylvania and New Jersey. The bat RABV (19-2898) detected from the migratory hoary bat belongs to the bats LC clade, clustering with the eleven viruses detected from the same species in Arizona, Washington, Idaho, and Tennessee. The approach used in this study generated novel data regarding genetic relationships of RABV variants, including their reservoirs, and their spatial origin and it would be useful as reference data for future investigations on RABV in North America. Continued surveillance and genome sequencing of bat RABV would be needed to monitor virus evolution and transmission, and to assess the emergence of genetic mutations that may be relevant for public health.


Subject(s)
Chiroptera/virology , Phylogeny , Rabies virus/genetics , Whole Genome Sequencing/methods , Animals , Rabies virus/classification
5.
Mitochondrial DNA B Resour ; 6(8): 2402-2405, 2021.
Article in English | MEDLINE | ID: mdl-34350351

ABSTRACT

Haemaphysalis longicornis (Ixodida: Ixodidae), the Asian longhorned tick, which is native to temperate East Asia, has been recently detected in the northeastern region of the United States, drawing concerns about its potential impact on the US animal and public health sectors. Knowledge about the genetic features of H. longicornis found in the US is limited. Therefore, we sequenced the complete mitochondrial genome (mt-genome) from two H. longicornis ticks recently collected in the State of New York, USA, in 2020. These ticks were morphologically identified and tested for tick-borne pathogens at the Connecticut Veterinary Medical Diagnostic Laboratory (Storrs, CT). The mt-genome was 14,694 bp in length and encoded 37 genes, including 13 protein-coding genes, 22 transfer RNAs, and two ribosomal RNAs. Phylogenetic analysis showed that the mt-genome clustered with those of other H. longicornis identified in China. The mt-genome sequence was 99.7% identical to a H. longicornis mt-genome (GenBank: MK439888) collected in China. The cox1 gene haplotype in these ticks belonged to the H1 type, which is the dominant haplotype present in central NJ and Staten Island, NY. The complete mt-genome data are needed to provide insights into genetic changes and phylogenetic studies of H. longicornis ticks.

11.
Mol Genet Metab ; 101(4): 413-6, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20817516

ABSTRACT

We describe the outcome of two consecutive pregnancies with a clinical presentation of ornithine transcarbamylase (OTC) deficiency (OTCD) without a molecular diagnosis. A 119kb deletion on Xp11.4 including the OTC gene was detected in the mother. The same deletion was identified in the blood spots from deceased male newborns. In patients with a clinical and biochemical presentation of OTCD and negative OTC sequencing, whole genome or targeted chromosomal microarray analysis (CMA) with coverage of the OTC and neighboring genes should be performed as a reflex test.


Subject(s)
Exons , Ornithine Carbamoyltransferase Deficiency Disease/diagnosis , Ornithine Carbamoyltransferase Deficiency Disease/genetics , Ornithine Carbamoyltransferase/genetics , Pregnancy Complications/enzymology , Pregnancy Complications/genetics , Adult , Female , Humans , Infant, Newborn , Male , Microarray Analysis , Oligonucleotide Array Sequence Analysis , Ornithine Carbamoyltransferase Deficiency Disease/enzymology , Polymorphism, Single Nucleotide , Pregnancy , Prenatal Diagnosis , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...