Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Nanomedicine ; 19: 5335-5363, 2024.
Article in English | MEDLINE | ID: mdl-38859956

ABSTRACT

The genome editing approach by clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) is a revolutionary advancement in genetic engineering. Owing to its simple design and powerful genome-editing capability, it offers a promising strategy for the treatment of different infectious, metabolic, and genetic diseases. The crystal structure of Streptococcus pyogenes Cas9 (SpCas9) in complex with sgRNA and its target DNA at 2.5 Å resolution reveals a groove accommodating sgRNA:DNA heteroduplex within a bilobate architecture with target recognition (REC) and nuclease (NUC) domains. The presence of a PAM is significantly required for target recognition, R-loop formation, and strand scission. Recently, the spatiotemporal control of CRISPR/Cas9 genome editing has been considerably improved by genetic, chemical, and physical regulatory strategies. The use of genetic modifiers anti-CRISPR proteins, cell-specific promoters, and histone acetyl transferases has uplifted the application of CRISPR/Cas9 as a future-generation genome editing tool. In addition, interventions by chemical control, small-molecule activators, oligonucleotide conjugates and bioresponsive delivery carriers have improved its application in other areas of biological fields. Furthermore, the intermediation of physical control by using heat-, light-, magnetism-, and ultrasound-responsive elements attached to this molecular tool has revolutionized genome editing further. These strategies significantly reduce CRISPR/Cas9's undesirable off-target effects. However, other undesirable effects still offer some challenges for comprehensive clinical translation using this genome-editing approach. In this review, we summarize recent advances in CRISPR/Cas9 structure, mechanistic action, and the role of small-molecule activators, inhibitors, promoters, and physical approaches. Finally, off-target measurement approaches, challenges, future prospects, and clinical applications are discussed.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Editing/methods , Humans , Animals , Streptococcus pyogenes/genetics , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/chemistry
2.
Oncotarget ; 14: 528-541, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37235839

ABSTRACT

INTRODUCTION: The BORIS, 11 zinc-finger transcription factors, is a member of the cancer-testis antigen (CTA) family. It is mapped to chromosome number 20q13.2 and this region is genetically linked to the early onset of breast cancer. The current study analyzed the correlation between BORIS mutations and the expression of the protein in breast cancer cases. MATERIALS AND METHODS: A population-based study including a total of 155 breast cancer tissue samples and an equal number of normal adjacent tissues from Indian female breast cancer patients was carried out. Mutations of the BORIS gene were detected by polymerase chain reaction-single standard confirmation polymorphisms (PCR-SSCP) and automated DNA sequencing and by immunohistochemistry for BORIS protein expression were performed. The observed findings were correlated with several clinicopathological parameters to find out the clinical relevance of associations. RESULTS: Of all the cases 16.12% (25/155) showed mutations in the BORIS gene. The observed mutations present on codon 329 are missense, leading to Val> Ile (G>A) change on exon 5 of the BORIS gene. A significant association was observed between mutations of the BORIS gene and some clinicopathological features like nodal status (p = 0.013), estrogen receptor (ER) expression (p = 0.008), progesterone receptor (PR) expression (p = 0.039), clinical stage (p = 0.010) and menopausal status (p = 0.023). The protein expression analysis showed 20.64% (32/155) samples showing low or no expression (+), 34.19% (53/155) with moderate expression (++), and 45.17% (70/155) showing high expression (+++) of BORIS protein. A significant association was observed between the expression of BORIS protein and clinicopathological features like clinical stage (p = 0.013), nodal status (p = 0.049), ER expression (p = 0.039), and PR expression (p = 0.027). When mutation and protein expression were correlated in combination with clinicopathological parameters a significant association was observed in the category of high (+++) level of BORIS protein expression (p = 0.017). CONCLUSION: The BORIS mutations and high protein expression occur frequently in carcinoma of the breast suggesting their association with the onset and progression of breast carcinoma. Further, the BORIS has the potential to be used as a biomarker.


Subject(s)
Breast Neoplasms , Male , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Breast/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Mutation , Gene Expression Regulation, Neoplastic
3.
Front Genet ; 12: 781400, 2021.
Article in English | MEDLINE | ID: mdl-34938323

ABSTRACT

Background: FOXP3 gene, known to be a potential tumor suppressor, has been identified to interact with HER2 in mammary cancer. Moreover, the high expression of FOXP3 serves as a good predictor of the survival of patients in breast cancer, prostate cancer, and gastric cancer. The expression and epigenetic alterations were evaluated in female breast cancer patients. Material and Methods: Expression studies at the mRNA level and protein level were conducted in 140 breast cancer cases by real-time PCR and immunohistochemistry, respectively. Epigenetic studies were also conducted by analyzing the methylation status at the promoter region of the gene using MS-PCR. Results: FOXP3 mRNA expression and protein expression were downregulated in breast cancer patients. The absence of FOXP3 protein expression is significantly associated with promoter methylation, where 70 methylated cases exhibited protein loss (70/95, 73.6%). Statistically, we also found a significant correlation between FOXP3 protein expression and TNM stage, promoter methylation, and histological grade. The methylated FOXP3 cases that did not express protein were also significantly associated with positive lymph node metastasis and HER-2 status. Conclusion: The expression profile of FOXP3 may serve as a prognostic factor. In short, FOXP3 may stand in the most crucial list of biomarkers for breast cancer, bringing compelling results in terms of treatment and management of the disease.

SELECTION OF CITATIONS
SEARCH DETAIL