Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Animals (Basel) ; 13(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37048528

ABSTRACT

The predictive abilities and accuracies of genomic best linear unbiased prediction (GBLUP) and the Bayesian (BayesA, BayesB, BayesC and Lasso) genomic selection (GS) methods for economically important growth (birth, weaning, and yearling weights) and carcass (depth of rib fat, apercent intramuscular fat and longissimus muscle area) traits were characterized by estimating the linkage disequilibrium (LD) structure in Brangus heifers using single nucleotide polymorphisms (SNP) markers. Sharp declines in LD were observed as distance among SNP markers increased. The application of the GBLUP and the Bayesian methods to obtain the GEBV for growth and carcass traits within k-means and random clusters showed that k-means and random clustering had quite similar heritability estimates, but the Bayesian methods resulted in the lower estimates of heritability between 0.06 and 0.21 for growth and carcass traits compared with those between 0.21 and 0.35 from the GBLUP methodologies. Although the prediction ability of the GBLUP and the Bayesian methods were quite similar for growth and carcass traits, the Bayesian methods overestimated the accuracies of GEBV because of the lower estimates of heritability of growth and carcass traits. However, GBLUP resulted in accuracy of GEBV for growth and carcass traits that parallels previous reports.

2.
Iran J Parasitol ; 16(1): 81-90, 2021.
Article in English | MEDLINE | ID: mdl-33786050

ABSTRACT

BACKGROUND: The present study aimed to determine genetic diversity of Trichomonas vaginalis (T. vaginalis) isolates with microsatellite markers in Turkey (Nov 2015 to 2016) and to create a web-based microsatellite typing (MT) approach for the global interpretation of the data. In addition, the endosymbiosis of Mycoplasma hominis (M. hominis) and T. vaginalis virus (TVV) in the isolates was also examined. METHODS: The allele sizes for each locus were calculated and microsatellite types were determined according to the allele profiles. The population structure was examined with Bayesian clustering method. A website (http://mttype.adu.edu.tr) was created for collection and sharing of microsatellite data. Presence of TVV and M. hominis in T. vaginalis isolates were investigated with electrophoresis and PCR. RESULTS: Of 630 vaginal samples T. vaginalis was detected in 30 (4.7%) and those were used for further analysis. The structure produced by a clustering algorithm revealed eight genetic groups. The typing of isolates according to microsatellites revealed 23 different microsatellite types. Three clones were determined among isolates (MT10 16.7%; MT18 10% and MT3 6.7%). The frequency of TVV and M. hominis was 16.6% (n=5) and 20% (n=6), respectively. CONCLUSION: Presence of three clones among 30 T. vaginalis isolates indicated that microsatellite-based genotyping was efficient to determine the clonal distribution of T. vaginalis isolates. Therefore, a promising tool might be developed further and adapted to the studies dealing with molecular epidemiology of T. vaginalis. Microsatellite data from forthcoming studies will be deposited and presented on the website. In addition, we also presented the frequency of two endosymbionts in T. vaginalis isolates for the first time in Turkey.

3.
J Dairy Sci ; 104(2): 1900-1916, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33358789

ABSTRACT

Genomic selection methodologies and genome-wide association studies use powerful statistical procedures that correlate large amounts of high-density SNP genotypes and phenotypic data. Actual 305-d milk (MY), fat (FY), and protein (PY) yield data on 695 cows and 76,355 genotyping-by-sequencing-generated SNP marker genotypes from Canadian Holstein dairy cows were used to characterize linkage disequilibrium (LD) structure of Canadian Holstein cows. Also, the comparison of pedigree-based BLUP, genomic BLUP (GBLUP), and Bayesian (BayesB) statistical methods in the genomic selection methodologies and the comparison of Bayesian ridge regression and BayesB statistical methods in the genome-wide association studies were carried out for MY, FY, and PY. Results from LD analysis revealed that as marker distance decreases, LD increases through chromosomes. However, unexpected high peaks in LD were observed between marker pairs with larger marker distances on all chromosomes. The GBLUP and BayesB models resulted in similar heritability estimates through 10-fold cross-validation for MY and PY; however, the GBLUP model resulted in higher heritability estimates than BayesB model for FY. The predictive ability of GBLUP model was significantly lower than that of BayesB for MY, FY, and PY. Association analyses indicated that 28 high-effect markers and markers on Bos taurus autosome 14 located within 6 genes (DOP1B, TONSL, CPSF1, ADCK5, PARP10, and GRINA) associated significantly with FY.


Subject(s)
Cattle/genetics , Genome-Wide Association Study/veterinary , Genome/genetics , Genomics , Milk/chemistry , Animals , Bayes Theorem , Canada , Cattle/physiology , Female , Genotype , Linkage Disequilibrium , Pedigree , Phenotype
4.
PLoS One ; 14(2): e0212545, 2019.
Article in English | MEDLINE | ID: mdl-30794631

ABSTRACT

Evaluation of harvest data remains one of the most important sources of information in the development of strategies to manage regional populations of white-tailed deer. While descriptive statistics and simple linear models are utilized extensively, the use of artificial neural networks for this type of data analyses is unexplored. Linear model was compared to Artificial Neural Networks (ANN) models with Levenberg-Marquardt (L-M), Bayesian Regularization (BR) and Scaled Conjugate Gradient (SCG) learning algorithms, to evaluate the relative accuracy in predicting antler beam diameter and length using age and dressed body weight in white-tailed deer. Data utilized for this study were obtained from male animals harvested by hunters between 1977-2009 at the Berry College Wildlife Management Area. Metrics for evaluating model performance indicated that linear and ANN models resulted in close match and good agreement between predicted and observed values and thus good performance for all models. However, metrics values of Mean Absolute Error and Root Mean Squared Error for linear model and the ANN-BR model indicated smaller error and lower deviation relative to the mean values of antler beam diameter and length in comparison to other ANN models, demonstrating better agreement of the predicted and observed values of antler beam diameter and length. ANN-SCG model resulted in the highest error within the models. Overall, metrics for evaluating model performance from the ANN model with BR learning algorithm and linear model indicated better agreement of the predicted and observed values of antler beam diameter and length. Results of this study suggest the use of ANN generated results that are comparable to Linear Models of harvest data to aid in the development of strategies to manage white-tailed deer.


Subject(s)
Antlers , Databases, Factual , Deer , Models, Biological , Neural Networks, Computer , Animals , Antlers/anatomy & histology , Antlers/growth & development , Deer/anatomy & histology , Deer/physiology , Male
SELECTION OF CITATIONS
SEARCH DETAIL