Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 60(5): 2910-2921, 2023 May.
Article in English | MEDLINE | ID: mdl-36749560

ABSTRACT

Fetal neural stem cells (FNSCs) present in the human fetal brain differentiate into cells of neuronal and glial lineages. The developing fetus is exposed to lower oxygen concentrations than adults, and this physiological hypoxia may influence the growth and differentiation of the FNSCs. This study aimed to evaluate the effect of hypoxia on the differentiation potential of human FNSCs isolated from the subventricular zone of aborted fetal brains (n = 5). FNSCs were isolated, expanded, and characterized by Nestin and Sox2 expression using immunocytochemistry and flow cytometry, respectively. These FNSCs were exposed to 20% oxygen (normoxia) and 0.2% oxygen (hypoxia) concentrations for 48 h, and hypoxia exposure (n = 5) was validated. Whole transcriptome analyses (Genespring GX13) of FNSCs exposed to hypoxia (Agilent 4 × 44 K human array slides) highlighted that genes associated with neurogenesis were enriched upon exposure to hypoxia. The pathway analysis of these enriched genes (using Metacore) showed the involvement of the WNT signaling pathway. Microarray analyses were validated using neuronal and glial lineage commitment markers, namely, NEUROG1, NEUROG2, ASCL1, DCX, GFAP, OLIG2, and NKX2.2, using qPCR (n = 9). DCX, ASCL1, NGN1, and GFAP protein expression was analyzed by Western blotting (n = 3). This demonstrated upregulation of the neuronal commitment markers upon hypoxia exposure, while no change was observed in astrocytic and oligodendrocyte lineage commitment markers. Increased expression of downstream targets of the WNT signaling pathway, TCF4 and ID2, by qPCR (n = 9) and increased protein expression of CTNNB1 (ß-catenin) and ID2 by Western blot (n = 3) indicated its involvement in mediating neuronal differentiation upon exposure to hypoxia.


Subject(s)
Neural Stem Cells , Wnt Signaling Pathway , Humans , Cells, Cultured , Neural Stem Cells/metabolism , Neurogenesis , Cell Differentiation , Fetus , Hypoxia/metabolism , Oxygen/pharmacology , Oxygen/metabolism
2.
Genes (Basel) ; 13(3)2022 03 12.
Article in English | MEDLINE | ID: mdl-35328060

ABSTRACT

Hypoxic ischemic injury to the fetal and neonatal brain is a leading cause of death and disability worldwide. Although animal and culture studies suggest that glutamate excitotoxicity is a primary contributor to neuronal death following hypoxia, the molecular mechanisms, and roles of various neural cells in the development of glutamate excitotoxicity in humans, is not fully understood. In this study, we developed a culture model of human fetal neural stem cell (FNSC)-derived astrocytes and examined their glutamate uptake in response to hypoxia. We isolated, established, and characterized cultures of FNSCs from aborted fetal brains and differentiated them into astrocytes, characterized by increased expression of the astrocyte markers glial fibrillary acidic protein (GFAP), excitatory amino acid transporter 1 (EAAT1) and EAAT2, and decreased expression of neural stem cell marker Nestin. Differentiated astrocytes were exposed to various oxygen concentrations mimicking normoxia (20% and 6%), moderate and severe hypoxia (2% and 0.2%, respectively). Interestingly, no change was observed in the expression of the glutamate transporter EAAT2 or glutamate uptake by astrocytes, even after exposure to severe hypoxia for 48 h. These results together suggest that human FNSC-derived astrocytes can maintain glutamate uptake after hypoxic injury and thus provide evidence for the possible neuroprotective role of astrocytes in hypoxic conditions.


Subject(s)
Astrocytes , Glutamic Acid , Neural Stem Cells , Astrocytes/metabolism , Cell Hypoxia , Cells, Cultured , Excitatory Amino Acid Transporter 1/genetics , Excitatory Amino Acid Transporter 1/metabolism , Glutamic Acid/metabolism , Humans , Neural Stem Cells/metabolism
3.
ASN Neuro ; 13: 17590914211044359, 2021.
Article in English | MEDLINE | ID: mdl-34618621

ABSTRACT

Glial cells perform important supporting functions for neurons through a dynamic crosstalk. Neuron-glia communication is the major phenomenon to sustain homeostatic functioning of the brain. Several interactive pathways between neurons and astrocytes are critical for the optimal functioning of neurons, and one such pathway is the ephrinA3-ephA4 signaling. The role of this pathway is essential in maintaining the levels of extracellular glutamate by regulating the excitatory amino acid transporters, EAAT1 and EAAT2 on astrocytes. Human immunodeficiency virus-1 (HIV-1) and its proteins cause glutamate excitotoxicity due to excess glutamate levels at sites of high synaptic activity. This study unravels the effects of HIV-1 transactivator of transcription (Tat) from clade B on ephrinA3 and its role in regulating glutamate levels in astrocyte-neuron co-cultures of human origin. It was observed that the expression of ephrinA3 increases in the presence of HIV-1 Tat B, while the expression of EAAT1 and EAAT2 was attenuated. This led to reduced glutamate uptake and therefore high neuronal death due to glutamate excitotoxicity. Knockdown of ephrinA3 using small interfering RNA, in the presence of HIV-1 Tat B reversed the neurotoxic effects of HIV-1 Tat B via increased expression of glutamate transporters that reduced the levels of extracellular glutamate. The in vitro findings were validated in autopsy brain sections from acquired immunodeficiency syndrome patients and we found ephrinA3 to be upregulated in the case of HIV-1-infected patients. This study offers valuable insights into astrocyte-mediated neuronal damage in HIV-1 neuropathogenesis.


Subject(s)
Ephrin-A3 , HIV-1 , Astrocytes/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Glutamic Acid , HIV-1/metabolism , Humans , Neurons/metabolism , Signal Transduction
4.
ACS Chem Neurosci ; 11(13): 1887-1899, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32491829

ABSTRACT

The coronavirus disease-19 (COVID-19) pandemic has emerged as one of the major outbreaks to be mentioned in history in coming times. Like severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a respiratory virus infecting the lungs with fever, dry cough, and acute pneumonia being the major symptoms. It infects epithelial cells expressing angiotensin converting enzyme 2 (ACE2) receptor, which is crucial for viral entry. Based on evolving clinical evidence, it is now unfitting to label SARS-CoV-2 as just a respiratory virus, as lately there are various reports that substantiate its pathogenicity in other organs of the body, including brain. In this review, we discuss the epidemiology of SARS-CoV-2 in comparison to SARS and MERS along with possibilities of viral entry into central nervous system (CNS) tissues. The review provides detailed information about the virulence, epidemiology, and insights into molecular pathways involved in the infectivity of the SARS-CoV-2 virus, along with an in-depth view of current concepts about the neurological significance of the SARS-CoV-2 virus and its neuropathological competence. The review also touches upon our current understanding of placental transmission of SARS-CoV-2, an important aspect of vertical transmission. Furthermore, the review provides a current update on strategies that have been used, are being used, or are under trial for treating the disease.


Subject(s)
Betacoronavirus/metabolism , Brain/metabolism , Coronavirus Infections/metabolism , Neurodegenerative Diseases/metabolism , Pneumonia, Viral/metabolism , Angiotensin-Converting Enzyme 2 , Brain/pathology , Brain/virology , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/pathology , Humans , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/virology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/epidemiology , Pneumonia, Viral/pathology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/metabolism , Severe Acute Respiratory Syndrome/pathology
5.
Mol Brain ; 13(1): 30, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32127013

ABSTRACT

Amyloid beta is a major constituent of the plaques found in the brains of patients suffering from Alzheimer's disease (AD). A growing body of research work suggests that neuroinflammation plays important roles in the development of AD. Thus, considerable efforts are directed towards identification of compounds that can reduce or inhibit neuroinflammation. Here, we show that sinomenine, a compound present in a Chinese medicinal plant, Sinomenium acutum, inhibits oligomeric amyloid beta-induced production of reactive oxygen species (ROS), nitric oxide (NO) and inflammation-related molecules from astrocytic cells. The conditioned medium from oligomeric amyloid beta-treated astrocytic cells induces cell death in the hippocampal neuronal cells. Importantly, sinomenine inhibits this cell death. In addition, this compound has inhibitory effects on the production of ROS, NO and inflammation-related factors from oligomeric amyloid-beta treated human astrocytes. Finally, the conditioned medium from oligomeric amyloid beta-treated human astrocytes induces cell death in the primary culture of human neurons, which is inhibited by sinomenine. Thus, sinomenine inhibits amyloid beta-induced production of toxic factors from astrocytes, and confers protection to hippocampal neuronal cells as well as human neurons against indirect toxicity. The results suggest that this compound could provide beneficial effects in AD and other neurodegenerative conditions by reducing inflammation and neuronal cell death.


Subject(s)
Amyloid beta-Peptides/toxicity , Astrocytes/pathology , Morphinans/pharmacology , Neurons/pathology , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Cell Line , Hippocampus/pathology , Humans , Inflammation/pathology , Mice , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/pharmacology , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...