Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Indoor Air ; 28(4): 624-639, 2018 07.
Article in English | MEDLINE | ID: mdl-29683219

ABSTRACT

The ability to inexpensively monitor PM2.5 to identify sources and enable controls would advance residential indoor air quality (IAQ) management. Consumer IAQ monitors incorporating low-cost optical particle sensors and connections with smart home platforms could provide this service if they reliably detect PM2.5 in homes. In this study, particles from typical residential sources were generated in a 120 m3 laboratory and time-concentration profiles were measured with 7 consumer monitors (2-3 units each), 2 research monitors (Thermo pDR-1500, MetOne BT-645), a Grimm Mini Wide-Range Aerosol Spectrometer (GRM), and a Tapered Element Oscillating Microbalance with Filter Dynamic Measurement System (FDMS), a Federal Equivalent Method for PM2.5 . Sources included recreational combustion (candles, cigarettes, incense), cooking activities, an unfiltered ultrasonic humidifier, and dust. FDMS measurements, filter samples, and known densities were used to adjust the GRM to obtain time-resolved mass concentrations. Data from the research monitors and 4 of the consumer monitors-AirBeam, AirVisual, Foobot, Purple Air-were time correlated and within a factor of 2 of the estimated mass concentrations for most sources. All 7 of the consumer and both research monitors substantially under-reported or missed events for which the emitted mass was comprised of particles smaller than 0.3 µm diameter.


Subject(s)
Air Filters , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring/instrumentation , Particulate Matter/analysis , Air Movements , Environmental Exposure/analysis , Housing , Humans , Particle Size
2.
Indoor Air ; 28(1): 89-101, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28892568

ABSTRACT

PM2.5 exposure is associated with significant health risk. Exposures in homes derive from both outdoor and indoor sources, with emissions occurring primarily in discrete events. Data on emission event magnitudes and schedules are needed to support simulation-based studies of exposures and mitigations. This study applied an identification and characterization algorithm to quantify time-resolved PM2.5 emission events from data collected during 224 days of monitoring in 18 California apartments with low-income residents. We identified and characterized 836 distinct events with median and mean values of 12 and 30 mg emitted mass, 16 and 23 minutes emission duration, 37 and 103 mg/h emission rates, and pseudo-first-order decay rates of 1.3 and 2.0/h. Mean event-averaged concentrations calculated using the determined event characteristics agreed to within 6% of measured values for 14 of the apartments. There were variations in event schedules and emitted mass across homes, with few events overnight and most emissions occurring during late afternoons and evenings. Event characteristics were similar during weekdays and weekends. Emitted mass was positively correlated with number of residents (Spearman coefficient, ρ=.10), bedrooms (ρ=.08), house volume (ρ=.29), and indoor-outdoor CO2 difference (ρ=.27). The event schedules can be used in probabilistic modeling of PM2.5 in low-income apartments.


Subject(s)
Air Pollution, Indoor/analysis , Particulate Matter/analysis , Algorithms , California , Housing , Humans , Poverty
3.
Indoor Air ; 27(4): 780-790, 2017 07.
Article in English | MEDLINE | ID: mdl-27917545

ABSTRACT

This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250 m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration provided indoor PM2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection, whereas supply MERV16 filtration reduced PM2.5 by 97-98% relative to outdoors. Supply filtration systems used little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 filter in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM2.5 . Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.


Subject(s)
Air Pollution, Indoor/analysis , Ozone/analysis , Particulate Matter/analysis , Ventilation/standards , Air Filters , California , Cooking , Environmental Monitoring/methods , Housing , Humans , Particle Size , Seasons , Ventilation/methods
4.
Indoor Air ; 26(2): 231-45, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25647016

ABSTRACT

This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NOX , NO2 , formaldehyde, and acetaldehyde over ~6-day periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NOX and NO2 attributable to indoor sources was estimated. NOX , NO2 , and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking. NOX and NO2 were higher in homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NOX and NO2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NOX and kitchen NO2 were not higher in homes with wall or floor furnace pilot burners, although bedroom NO2 was higher. In homes that cooked 4 h or more with gas, self-reported use of kitchen exhaust was associated with lower NOX , NO2 , and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde.


Subject(s)
Air Pollution, Indoor/analysis , Cooking/instrumentation , Environmental Monitoring , Housing/statistics & numerical data , Natural Gas , Air Pollution, Indoor/legislation & jurisprudence , California
5.
Indoor Air ; 25(5): 523-35, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25252109

ABSTRACT

Measurements were taken in new US residences to assess the extent to which ventilation and source control can mitigate formaldehyde exposure. Increasing ventilation consistently lowered indoor formaldehyde concentrations. However, at a reference air exchange rate of 0.35 h(-1), increasing ventilation was up to 60% less effective than would be predicted if the emission rate were constant. This is consistent with formaldehyde emission rates decreasing as air concentrations increase, as observed in chamber studies. In contrast, measurements suggest acetaldehyde emission was independent of ventilation rate. To evaluate the effectiveness of source control, formaldehyde concentrations were measured in Leadership in Energy and Environmental Design (LEED)-certified/Indoor airPLUS homes constructed with materials certified to have low emission rates of volatile organic compounds (VOC). At a reference air exchange rate of 0.35 h(-1), and adjusting for home age, temperature and relative humidity, formaldehyde concentrations in homes built with low-VOC materials were 42% lower on average than in reference new homes with conventional building materials. Without adjustment, concentrations were 27% lower in the low-VOC homes. The mean and standard deviation of formaldehyde concentration was 33 µg/m(3) and 22 µg/m(3) for low-VOC homes and 45 µg/m(3) and 30 µg/m(3) for conventional.


Subject(s)
Acetaldehyde/analysis , Air Pollution, Indoor , Environmental Exposure/prevention & control , Formaldehyde/analysis , Ventilation
6.
Indoor Air ; 25(1): 45-58, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24750219

ABSTRACT

Effective exhaust hoods can mitigate the indoor air quality impacts of pollutant emissions from residential cooking. This study reports capture efficiencies (CE) measured for cooking-generated particles for scripted cooking procedures in a 121-m3 chamber with kitchenette. CEs also were measured for burner produced CO2 during cooking and separately for pots and pans containing water. The study used four exhaust hoods previously tested by Delp and Singer (Environ. Sci. Technol., 2012, 46, 6167-6173). For pan-frying a hamburger over medium heat on the back burner, CEs for particles were similar to those for burner produced CO2 and mostly above 80%. For stir-frying green beans in a wok (high heat, front burner), CEs for burner CO2 during cooking varied by hood and airflow: CEs were 34-38% for low (51-68 l/s) and 54-72% for high (109-138 l/s) settings. CEs for 0.3-2.0 µm particles during front burner stir-frying were 3-11% on low and 16-70% on high settings. Results indicate that CEs measured for burner CO2 are not predictive of CEs of cooking-generated particles under all conditions, but they may be suitable to identify devices with CEs above 80% both for burner combustion products and for cooking-related particles.


Subject(s)
Air Pollution, Indoor , Carbon Dioxide , Cooking , Particulate Matter , Ventilation/methods , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Carbon Dioxide/analysis , Environmental Monitoring , Housing , Humans , Particulate Matter/analysis
7.
Indoor Air ; 22(3): 224-34, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22044446

ABSTRACT

UNLABELLED: The performance metrics of airflow, sound, and combustion product capture efficiency (CE) were measured for a convenience sample of 15 cooking exhaust devices, as installed in residences. Results were analyzed to quantify the impact of various device- and installation-dependent parameters on CE. Measured maximum airflows were 70% or lower than values noted on product literature for 10 of the devices. Above-the-cooktop devices with flat-bottom surfaces (no capture hood)--including exhaust fan/microwave combination appliances--were found to have much lower CE at similar flow rates, compared to devices with capture hoods. For almost all exhaust devices and especially for rear-mounted downdraft exhaust and microwaves, CE was substantially higher for back compared with front burner use. Flow rate, and the extent to which the exhaust device extends over the burners that are in use, also had a large effect on CE. A flow rate of 95 liters per second (200 cubic feet per minute) was necessary, but not sufficient, to attain capture efficiency in excess of 75% for the front burners. A-weighted sound levels in kitchens exceeded 56 dB* when operating at the highest fan setting for all 14 devices evaluated for sound performance. PRACTICAL IMPLICATIONS: Natural gas cooking burners and many cooking activities emit pollutants that can reach hazardous levels in homes. Venting range hoods and other cooking exhaust fans are thought to provide adequate protection when used. This study demonstrates that airflows of installed devices are often below advertised values and that less than half of the pollutants emitted by gas cooking burners are removed during many operational conditions. For many devices, achieving capture efficiencies that approach or exceed 75% requires operation at settings that produce prohibitive noise levels. While users can improve performance by preferentially using back burners, results suggest the need for improvements in hood designs to achieve high pollutant capture efficiencies at acceptable noise levels.


Subject(s)
Cooking , Ventilation/instrumentation , Humans , Regression Analysis , Ventilation/standards
8.
Indoor Air ; 21(2): 92-109, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21392118

ABSTRACT

UNLABELLED: Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper-bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for five activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes. Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes, and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM(2.5). Activity-based emissions are shown to pose potential acute health hazards for PM(2.5), formaldehyde, CO, chloroform, and NO(2). PRACTICAL IMPLICATIONS: This analysis identifies key chemical contaminants of concern in residential indoor air using a comprehensive and consistent hazard-evaluation protocol. The identification of a succinct group of chemical hazards in indoor air will allow for successful risk ranking and mitigation prioritization for the indoor residential environment. This work also indicates some common household activities that may lead to the acute levels of pollutant exposure and identifies hazardous chemicals for priority removal from consumer products and home furnishings.


Subject(s)
Air Pollution, Indoor/analysis , Hazardous Substances/analysis , Housing , Particulate Matter/analysis , Volatile Organic Compounds/analysis , Carbon Monoxide/analysis , Databases, Factual , Humans , Nitrogen Dioxide/analysis , Particulate Matter/chemistry , Risk Assessment , United States
9.
Indoor Air ; 16(3): 179-91, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16683937

ABSTRACT

UNLABELLED: Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m3 room ventilated at approximately 0.5/h. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 microg/m3 for individual terpenoids, including alpha-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and alpha-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or d-limonene were 300-6000 microg/m3 after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractional emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, and approximately 25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were approximately 35-70% with towels retained, and 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and beta-citronellol) were emitted at 35-180 mg/day over 3 days while air concentrations averaged 30-160 microg/m3. PRACTICAL IMPLICATIONS: While effective cleaning can improve the healthfulness of indoor environments, this work shows that use of some consumer cleaning agents can yield high levels of volatile organic compounds, including glycol ethers--which are regulated toxic air contaminants--and terpenes that can react with ozone to form a variety of secondary pollutants including formaldehyde and ultrafine particles. Persons involved in cleaning, especially those who clean occupationally or often, might encounter excessive exposures to these pollutants owing to cleaning product emissions. Mitigation options include screening of product ingredients and increased ventilation during and after cleaning. Certain practices, such as the use of some products in dilute solution vs. full-strength and the prompt removal of cleaning supplies from occupied spaces, can reduce emissions and exposures to 2-butoxyethanol and other volatile constituents. Also, it may be prudent to limit use of products containing ozone-reactive constituents when indoor ozone concentrations are elevated either because of high ambient ozone levels or because of the indoor use of ozone-generating equipment.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor , Ethers/analysis , Glycols/analysis , Household Products , Terpenes/analysis , Detergents , Humans , Inhalation Exposure/adverse effects , Ozone/analysis , Particle Size , Volatilization
10.
JAMA ; 273(16): 1296-8, 1995 Apr 26.
Article in English | MEDLINE | ID: mdl-7715044

ABSTRACT

OBJECTIVE: To provide quantitative data about the accuracy of the information about drugs presented to physicians by pharmaceutical sales representatives. DESIGN: One hundred six statements about drugs made during 13 presentations by pharmaceutical representatives were analyzed for accuracy. Statements were rated inaccurate if they contradicted the 1993 Physicians' Desk Reference or material quoted or handed out by the sales representative. SETTING: University teaching hospital. RESULTS: Twelve (11%) of 106 statements about drugs were inaccurate. All 12 inaccurate statements were favorable toward the promoted drug, whereas 39 (49%) of 79 accurate statements were favorable (P = .005). None of 15 statements about competitors' drugs were favorable, but all were accurate, significantly P < .001) differing from statements about promoted drugs. In a survey of 27 physicians who attended these presentations, seven (26%) recalled any false statement made by a pharmaceutical representative, and 10 (37%) said information from the representatives influenced the way they prescribed drugs. CONCLUSIONS: Eleven percent of the statements made by pharmaceutical representatives about drugs contradicted information readily available to them. Physicians generally failed to recognize the inaccurate statements.


Subject(s)
Commerce , Drug Industry , Drug Information Services/standards , Information Dissemination , Humans
SELECTION OF CITATIONS
SEARCH DETAIL