Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Article in English | MEDLINE | ID: mdl-38367738

ABSTRACT

BACKGROUND: Acute lung allograft dysfunction (ALAD) is an imprecise syndrome denoting concern for the onset of chronic lung allograft dysfunction (CLAD). Mechanistic biomarkers are needed that stratify risk of ALAD progression to CLAD. We hypothesized that single cell investigation of bronchoalveolar lavage (BAL) cells at the time of ALAD would identify immune cells linked to progressive graft dysfunction. METHODS: We prospectively collected BAL from consenting lung transplant recipients for single cell RNA sequencing. ALAD was defined by a ≥10% decrease in FEV1 not caused by infection or acute rejection and samples were matched to BAL from recipients with stable lung function. We examined cell compositional and transcriptional differences across control, ALAD with decline, and ALAD with recovery groups. We also assessed cell-cell communication. RESULTS: BAL was assessed for 17 ALAD cases with subsequent decline (ALAD declined), 13 ALAD cases that resolved (ALAD recovered), and 15 cases with stable lung function. We observed broad differences in frequencies of the 26 unique cell populations across groups (p = 0.02). A CD8 T cell (p = 0.04) and a macrophage cluster (p = 0.01) best identified ALAD declined from the ALAD recovered and stable groups. This macrophage cluster was distinguished by an anti-inflammatory signature and the CD8 T cell cluster resembled a Tissue Resident Memory subset. Anti-inflammatory macrophages signaled to activated CD8 T cells via class I HLA, fibronectin, and galectin pathways (p < 0.05 for each). Recipients with discordance between these cells had a nearly 5-fold increased risk of severe graft dysfunction or death (HR 4.6, 95% CI 1.1-19.2, adjusted p = 0.03). We validated these key findings in 2 public lung transplant genomic datasets. CONCLUSIONS: BAL anti-inflammatory macrophages may protect against CLAD by suppressing CD8 T cells. These populations merit functional and longitudinal assessment in additional cohorts.

2.
JHLT Open ; 32024 Feb.
Article in English | MEDLINE | ID: mdl-38223833

ABSTRACT

Obesity at the time of lung transplant is associated with decreased survival. How providers manage obesity after lung transplantation is unknown. We performed an international survey of lung transplant providers to assess beliefs and practices regarding post-transplant obesity management. Eighty-one providers initiated the survey and 73 (90%) completed the full survey. Respondents were primarily North American-based pulmonary physicians. Nearly all providers believe treating obesity improves quality of life (99%) and survival (95%) after lung transplantation, but that only 41% of patients attempting weight loss are successful. While respondents nearly always recommend diet (96%), exercise (92%), and dietician consultation (89%), they less frequently recommend prescription weight loss medications (29%) or bariatric surgery (11%). Lung transplant providers are motivated to treat obesity in transplant recipients. However, there is a gap between general obesity treatment guidelines and lung transplant practice. Additional training, education, and trials in this population could address this gap.

3.
J Heart Lung Transplant ; 43(4): 633-641, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38065239

ABSTRACT

BACKGROUND: Primary graft dysfunction (PGD) is the leading cause of early morbidity and mortality after lung transplantation. Accurate prediction of PGD risk could inform donor approaches and perioperative care planning. We sought to develop a clinically useful, generalizable PGD prediction model to aid in transplant decision-making. METHODS: We derived a predictive model in a prospective cohort study of subjects from 2012 to 2018, followed by a single-center external validation. We used regularized (lasso) logistic regression to evaluate the predictive ability of clinically available PGD predictors and developed a user interface for clinical application. Using decision curve analysis, we quantified the net benefit of the model across a range of PGD risk thresholds and assessed model calibration and discrimination. RESULTS: The PGD predictive model included distance from donor hospital to recipient transplant center, recipient age, predicted total lung capacity, lung allocation score (LAS), body mass index, pulmonary artery mean pressure, sex, and indication for transplant; donor age, sex, mechanism of death, and donor smoking status; and interaction terms for LAS and donor distance. The interface allows for real-time assessment of PGD risk for any donor/recipient combination. The model offers decision-making net benefit in the PGD risk range of 10% to 75% in the derivation centers and 2% to 10% in the validation cohort, a range incorporating the incidence in that cohort. CONCLUSION: We developed a clinically useful PGD predictive algorithm across a range of PGD risk thresholds to support transplant decision-making, posttransplant care, and enrich samples for PGD treatment trials.


Subject(s)
Lung Transplantation , Primary Graft Dysfunction , Humans , Risk Factors , Risk Assessment , Primary Graft Dysfunction/diagnosis , Primary Graft Dysfunction/epidemiology , Prospective Studies , Retrospective Studies
4.
Am J Respir Crit Care Med ; 209(1): 91-100, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37734031

ABSTRACT

Rationale: Primary graft dysfunction (PGD) is the leading cause of early morbidity and mortality after lung transplantation. Prior studies implicated proxy-defined donor smoking as a risk factor for PGD and mortality. Objectives: We aimed to more accurately assess the impact of donor smoke exposure on PGD and mortality using quantitative smoke exposure biomarkers. Methods: We performed a multicenter prospective cohort study of lung transplant recipients enrolled in the Lung Transplant Outcomes Group cohort between 2012 and 2018. PGD was defined as grade 3 at 48 or 72 hours after lung reperfusion. Donor smoking was defined using accepted thresholds of urinary biomarkers of nicotine exposure (cotinine) and tobacco-specific nitrosamine (4-[methylnitrosamino]-1-[3-pyridyl]-1-butanol [NNAL]) in addition to clinical history. The donor smoking-PGD association was assessed using logistic regression, and survival analysis was performed using inverse probability of exposure weighting according to smoking category. Measurements and Main Results: Active donor smoking prevalence varied by definition, with 34-43% based on urinary cotinine, 28% by urinary NNAL, and 37% by clinical documentation. The standardized risk of PGD associated with active donor smoking was higher across all definitions, with an absolute risk increase of 11.5% (95% confidence interval [CI], 3.8% to 19.2%) by urinary cotinine, 5.7% (95% CI, -3.4% to 14.9%) by urinary NNAL, and 6.5% (95% CI, -2.8% to 15.8%) defined clinically. Donor smoking was not associated with differential post-lung transplant survival using any definition. Conclusions: Donor smoking associates with a modest increase in PGD risk but not with increased recipient mortality. Use of lungs from smokers is likely safe and may increase lung donor availability. Clinical trial registered with www.clinicaltrials.gov (NCT00552357).


Subject(s)
Lung Transplantation , Primary Graft Dysfunction , Smoking , Tissue Donors , Humans , Biomarkers , Cotinine , Lung Transplantation/adverse effects , Primary Graft Dysfunction/epidemiology , Prospective Studies , Smoking/adverse effects
5.
medRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37873197

ABSTRACT

Many lung transplant recipients fail to derive the expected improvements in functioning, HRQL, or long-term survival. Sleep may represent an important, albeit rarely examined, factor influencing lung transplant outcomes. Within a larger cohort study, 141 lung transplant recipients completed the Medical Outcomes Study (MOS) Sleep Scale along with a broader survey of patient-reported outcome (PRO) measures and frailty assessment. MOS Sleep yields the Sleep Problems Index (SPI); we also derived an insomnia-specific subscale. Potential perioperative predictors of disturbed sleep and time to chronic lung allograft dysfunction (CLAD) and death were derived from medical records. We investigated associations between perioperative predictors on SPI and Insomnia and associations between SPI and Insomnia on PROs and frailty by linear regressions, adjusting for age, sex, and lung function. We evaluated the associations between SPI and Insomnia on time to CLAD and death using Cox models, adjusting for age, sex, and transplant indication. Post-transplant hospital length of stay >30 days was associated with worse sleep by SPI and insomnia (SPI: p=0.01; Insomnia p=0.02). Worse sleep by SPI and insomnia was associated with worse depression, cognitive function, HRQL, physical disability, health utilities, and Fried Frailty Phenotype frailty (all p<0.01). Those in the worst quartile of SPI and insomnia exhibited increased risk of CLAD (HR 2.18; 95%CI: 1.22-3.89 ; p=0.01 for SPI and HR 1.96; 95%CI 1.09-3.53; p=0.03 for insomnia). Worsening in SPI but not insomnia was also associated with mortality (HR: 1.29; 95%CI: 1.05-1.58; p=0.01). Poor sleep after lung transplant may be a novel predictor of patient reported outcomes, frailty, CLAD, and death with potentially important screening and treatment implications.

6.
Am J Respir Crit Care Med ; 209(1): 70-82, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37878820

ABSTRACT

Rationale: Acute lung injury (ALI) carries a high risk of mortality but has no established pharmacologic therapy. We previously found that experimental ALI occurs through natural killer (NK) cell NKG2D receptor activation and that the cognate human ligand, MICB, was associated with ALI after transplantation. Objectives: To investigate the association of a common missense variant, MICBG406A, with ALI. Methods: We assessed MICBG406A genotypes within two multicenter observational study cohorts at risk for ALI: primary graft dysfunction (N = 619) and acute respiratory distress syndrome (N = 1,376). Variant protein functional effects were determined in cultured and ex vivo human samples. Measurements and Main Results: Recipients of MICBG406A-homozygous allografts had an 11.1% absolute risk reduction (95% confidence interval [CI], 3.2-19.4%) for severe primary graft dysfunction after lung transplantation and reduced risk for allograft failure (hazard ratio, 0.36; 95% CI, 0.13-0.98). In participants with sepsis, we observed 39% reduced odds of moderately or severely impaired oxygenation among MICBG406A-homozygous individuals (95% CI, 0.43-0.86). BAL NK cells were less frequent and less mature in participants with MICBG406A. Expression of missense variant protein MICBD136N in cultured cells resulted in reduced surface MICB and reduced NKG2D ligation relative to wild-type MICB. Coculture of variant MICBD136N cells with NK cells resulted in less NKG2D activation and less susceptibility to NK cell killing relative to the wild-type cells. Conclusions: These data support a role for MICB signaling through the NKG2D receptor in mediating ALI, suggesting a novel therapeutic approach.


Subject(s)
Acute Lung Injury , Primary Graft Dysfunction , Humans , Acute Lung Injury/genetics , Genomics , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism
7.
JCI Insight ; 8(21)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37788115

ABSTRACT

Primary graft dysfunction (PGD) limits clinical benefit after lung transplantation, a life-prolonging therapy for patients with end-stage disease. PGD is the clinical syndrome resulting from pulmonary ischemia-reperfusion injury (IRI), driven by innate immune inflammation. We recently demonstrated a key role for NK cells in the airways of mouse models and human tissue samples of IRI. Here, we used 2 mouse models paired with human lung transplant samples to investigate the mechanisms whereby NK cells migrate to the airways to mediate lung injury. We demonstrate that chemokine receptor ligand transcripts and proteins are increased in mouse and human disease. CCR5 ligand transcripts were correlated with NK cell gene signatures independently of NK cell CCR5 ligand secretion. NK cells expressing CCR5 were increased in the lung and airways during IRI and had increased markers of tissue residency and maturation. Allosteric CCR5 drug blockade reduced the migration of NK cells to the site of injury. CCR5 blockade also blunted quantitative measures of experimental IRI. Additionally, in human lung transplant bronchoalveolar lavage samples, we found that CCR5 ligand was associated with increased patient morbidity and that the CCR5 receptor was increased in expression on human NK cells following PGD. These data support a potential mechanism for NK cell migration during lung injury and identify a plausible preventative treatment for PGD.


Subject(s)
Lung Injury , Reperfusion Injury , Animals , Humans , Mice , Killer Cells, Natural , Ligands , Lung/metabolism , Lung Injury/metabolism , Receptors, CCR5/genetics , Reperfusion Injury/metabolism
8.
Transplant Direct ; 9(9): e1495, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37575951

ABSTRACT

Large-airway lymphocytic inflammation (LB), assessed on endobronchial biopsies, has been associated with acute cellular rejection and chronic lung allograft dysfunction (CLAD). Azithromycin (AZI) prophylaxis has been used to prevent airway inflammation and subsequent CLAD, with inconsistent results. We hypothesized that AZI prophylaxis would be associated with reduced LB, changes in bronchoalveolar lavage (BAL) immune cell populations, and improved CLAD-free survival. Methods: We compared frequencies of LB from endobronchial biopsies before (N = 1856) and after (N = 975) protocolized initiation of AZI prophylaxis at our center. LB was classified as none, minimal, mild, or moderate by histopathologic analysis. LB grades were compared using ordinal mixed-model regression. Corresponding automated BAL leukocyte frequencies were compared using mixed-effects modeling. The effect of AZI prophylaxis on CLAD-free survival was assessed by a Cox proportional hazards model adjusted for age, sex, ethnicity, transplant indication, and cytomegalovirus serostatus. Results: Biopsies in the pre-AZI era had 2-fold increased odds (95% confidence interval, 1.5-2.7; P < 0.001) of higher LB grades. LB was associated with BAL neutrophilia in both eras. However, there was no difference in risk for CLAD or death between AZI eras (hazard ratio 1.3; 95% confidence interval, 0.7-2.0; P = 0.45). Conclusions: Decreased airway inflammation in the era of AZI prophylaxis may represent a direct effect of AZI therapy or reflect other practices or environmental changes. In this cohort, AZI prophylaxis was not associated with improved CLAD-free survival.

9.
Nat Commun ; 14(1): 4896, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580341

ABSTRACT

Electrospray deposition (ESD) is a promising technique for depositing micro-/nano-scale droplets and particles with high quality and repeatability. It is particularly attractive for surface coating of costly and delicate biomaterials and bioactive compounds. While high efficiency of ESD has only been successfully demonstrated for spraying surfaces larger than the spray plume, this work extends its utility to smaller surfaces. It is shown that by architecting the local "charge landscape", ESD coatings of surfaces smaller than plume size can be achieved. Efficiency approaching 100% is demonstrated with multiple model materials, including biocompatible polymers, proteins, and bioactive small molecules, on both flat and microneedle array targets. UV-visible spectroscopy and high-performance liquid chromatography measurements validate the high efficiency and quality of the sprayed material. Here, we show how this process is an efficient and more competitive alternative to other conformal coating mechanisms, such as dip coating or inkjet printing, for micro-engineered applications.

10.
J Heart Lung Transplant ; 42(12): 1700-1709, 2023 12.
Article in English | MEDLINE | ID: mdl-37648073

ABSTRACT

Primary graft dysfunction (PGD) is a major risk factor for chronic lung allograft dysfunction (CLAD) following lung transplantation, but the mechanisms linking these pathologies are poorly understood. We hypothesized that the replicative stress induced by PGD would lead to erosion of telomeres, and that this telomere dysfunction could potentiate CLAD. In a longitudinal cohort of 72 lung transplant recipients with >6 years median follow-up time, we assessed tissue telomere length, PGD grade, and freedom from CLAD. Epithelial telomere length and fibrosis-associated gene expression were assessed on endobronchial biopsies taken at 2 to 4 weeks post-transplant by TeloFISH assay and nanoString digital RNA counting. Negative-binomial mixed-effects and Cox-proportional hazards models accounted for TeloFISH staining batch effects and subject characteristics including donor age. Increasing grade of PGD severity was associated with shorter airway epithelial telomere lengths (p = 0.01). Transcriptomic analysis of fibrosis-associated genes showed alteration in fibrotic pathways in airway tissue recovering from PGD, while telomere dysfunction was associated with inflammation and impaired remodeling. Shorter tissue telomere length was in turn associated with increased CLAD risk, with a hazard ratio of 1.89 (95% CI 1.16-3.06) per standard deviation decrease in airway telomere length, after adjusting for subject characteristics. PGD may accelerate telomere dysfunction, potentiating immune responses and dysregulated repair. Epithelial cell telomere dysfunction may represent one of several mechanisms linking PGD to CLAD.


Subject(s)
Lung Transplantation , Primary Graft Dysfunction , Humans , Primary Graft Dysfunction/genetics , Lung , Lung Transplantation/adverse effects , Allografts , Fibrosis , Telomere , Retrospective Studies
11.
Eur Respir J ; 62(2)2023 08.
Article in English | MEDLINE | ID: mdl-37414420

ABSTRACT

Frailty is a complex, multidimensional syndrome characterised by a loss of physiological reserves that increases a person's susceptibility to adverse health outcomes. Most knowledge regarding frailty originates from geriatric medicine; however, awareness of its importance as a treatable trait for people with chronic respiratory disease (including asthma, COPD and interstitial lung disease) is emerging. A clearer understanding of frailty and its impact in chronic respiratory disease is a prerequisite to optimise clinical management in the future. This unmet need underpins the rationale for undertaking the present work. This European Respiratory Society statement synthesises current evidence and clinical insights from international experts and people affected by chronic respiratory conditions regarding frailty in adults with chronic respiratory disease. The scope includes coverage of frailty within international respiratory guidelines, prevalence and risk factors, review of clinical management options (including comprehensive geriatric care, rehabilitation, nutrition, pharmacological and psychological therapies) and identification of evidence gaps to inform future priority areas of research. Frailty is underrepresented in international respiratory guidelines, despite being common and related to increased hospitalisation and mortality. Validated screening instruments can detect frailty to prompt comprehensive assessment and personalised clinical management. Clinical trials targeting people with chronic respiratory disease and frailty are needed.


Subject(s)
Asthma , Frailty , Geriatrics , Humans , Adult , Aged , Frailty/complications , Frail Elderly , Risk Factors
12.
Transpl Infect Dis ; 25(4): e14091, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37428868

ABSTRACT

BACKGROUND: Culture of bronchoalveolar lavage (BAL) specimens takes time to report. We tested whether a molecular diagnostic test could accelerate donor lung assessment and treatment. METHODS: We compared BioFire Film Array Pneumonia Panel (BFPP) with standard of care (SOC) tests on lung allograft samples at three time points: (1) donor BAL at organ recovery, (2) donor bronchial tissue and airway swab at implantation, and (3) first recipient BAL following lung implantation. Primary outcomes were the difference in time to result (Wilcoxon signed-ranked tests) and the agreement in results between BFPP and SOC assays (Gwet's agreement coefficient). RESULTS: We enrolled 50 subjects. In donor lung BAL specimens, BFPP detected 52 infections (14 out of 26 pathogens in the panel). Viral and bacterial BFPP results were reported 2.4 h (interquartile range, IQR 2.0-6.4) following BAL versus 4.6 h (IQR 1.9-6.0, p = 0.625) for OPO BAL viral SOC results and 66 h (IQR 47-87, p < .0001) for OPO BAL bacterial SOC results. Although there was high overall agreement of results between BAL-BFPP versus OPO BAL-SOC tests (Gwet's AC p < .001 for all), the level of agreement differed among 26 pathogens designed in BFPP and differed by types of specimens. BFPP could not detect many infections identified by SOC assays. CONCLUSIONS: BFPP decreased time to detection of lung pathogens among donated lungs, but it cannot replace SOC tests due to the limited number of pathogens in the panel.


Subject(s)
Pneumonia, Bacterial , Pneumonia , Humans , Bronchoalveolar Lavage Fluid/microbiology , Bronchoalveolar Lavage/methods , Lung , Pneumonia/diagnosis , Bacteria
13.
Ann Am Thorac Soc ; 20(6): 767-780, 2023 06.
Article in English | MEDLINE | ID: mdl-37261787

ABSTRACT

People with respiratory disease have increased risk of developing frailty, which is associated with worse health outcomes. There is growing evidence of the role of rehabilitation in managing frailty in people with respiratory disease. However, several challenges remain regarding optimal methods of identifying frailty and delivering rehabilitation for this population. The aims of this American Thoracic Society workshop were to outline key definitions and concepts around rehabilitation for people with respiratory disease and frailty, synthesize available evidence, and explore how programs may be adapted to align to the needs and experiences of this population. Across two half-day virtual workshops, 20 professionals from diverse disciplines, professions, and countries discussed key developments and identified opportunities for future research, with additional input via online correspondence. Participants highlighted a "frailty rehabilitation paradox" whereby pulmonary rehabilitation can effectively reduce frailty, but programs are challenging for some individuals with frailty to complete. Frailty should not limit access to rehabilitation; instead, the identification of frailty should prompt comprehensive assessment and tailored support, including onward referral for additional specialist input. Exercise prescriptions that explicitly consider symptom burden and comorbidities, integration of additional geriatric or palliative care expertise, and/or preemptive planning for disruptions to participation may support engagement and outcomes. To identify and measure frailty in people with respiratory disease, tools should be selected on the basis of sensitivity, specificity, responsiveness, and feasibility for their intended purpose. Research is required to expand understanding beyond the physical dimensions of frailty and to explore the merits and limitations of telerehabilitation or home-based pulmonary rehabilitation for people with chronic respiratory disease and frailty.


Subject(s)
Frailty , Respiration Disorders , Respiratory Tract Diseases , Telerehabilitation , Humans , United States , Aged , Telerehabilitation/methods , Palliative Care
14.
J Heart Lung Transplant ; 42(6): 828-837, 2023 06.
Article in English | MEDLINE | ID: mdl-37031033

ABSTRACT

BACKGROUND: We developed an automated, chat-based, digital health intervention using Bluetooth-enabled home spirometers to monitor for complications of lung transplantation in a real-world application. METHODS: A chat-based application prompted patients to perform home spirometry, enter their forced expiratory volume in 1 second (FEV1), answer symptom queries, and provided patient education. The program alerted patients and providers to substantial FEV1 decreases and concerning symptoms. Data was integrated into the electronic health record (EHR) system and dashboards were developed for program monitoring. RESULT: Between May 2020 and December 2021, 544 patients were invited to enroll, of whom 427 were invited remotely and 117 were enrolled in-person. 371 (68%) participated by submitting ≥1 FEV1 values. Overall engagement was high, with an average of 197 unique patients submitting FEV1 data per month. In-person enrollees submitted an average of 4.6 FEV1 values per month and responded to 55% of scheduled chats. Home and laboratory FEV1 values correlated closely (rho = 0.93). There was an average of 133 ± 59 FEV1 decline alerts and 59 ± 23 symptom alerts per month. 72% of patients accessed education modules, and the program had a high net promoter score (53) amongst users. CONCLUSIONS: We demonstrate that a novel, automated, chat-based, and EHR-integrated home spirometry intervention is well accepted, generates reliable assessments of graft function, and can deliver automated feedback and education resulting in moderately-high adherence rates. We found that in-person onboarding yields better engagement and adherence. Future work will aim to demonstrate the impact of remote care monitoring on early detection of lung transplant complications.


Subject(s)
Lung Diseases , Lung Transplantation , Humans , Spirometry/methods , Forced Expiratory Volume , Respiratory Function Tests
16.
Ann Am Thorac Soc ; 20(6): 825-833, 2023 06.
Article in English | MEDLINE | ID: mdl-36996331

ABSTRACT

Rationale: Low and high body mass index (BMI) are associated with increased mortality after lung transplantation. Why extremes of BMI might increase risk of death is unknown. Objectives: To estimate the association of extremes of BMI with causes of death after transplantation. Methods: We performed a retrospective study of the United Network for Organ Sharing database, including 26,721 adults who underwent lung transplantation in the United States between May 4, 2005, and December 2, 2020. We mapped 76 reported causes of death into 16 distinct groups. We estimated cause-specific hazards for death from each cause using Cox models. Results: Relative to a subject with a BMI of 24 kg/m2, a subject with a BMI of 16 kg/m2 had 38% (hazard ratio [HR], 1.38; 95% confidence interval [95% CI], 0.99-1.90), 82% (HR, 1.82; 95% CI, 1.34-2.46), and 62% (HR, 1.62; 95% CI, 1.18-2.22) increased hazards of death from acute respiratory failure, chronic lung allograft dysfunction (CLAD), and infection, respectively, and a subject with a BMI of 36 kg/m2 had 44% (HR, 1.44; 95% CI, 0.97-2.12), 42% (HR, 1.42; 95% CI, 0.93-2.15), and 185% (HR, 2.85; 95% CI, 1.28-6.33) increased hazards of death from acute respiratory failure, CLAD, and primary graft dysfunction, respectively. Conclusions: Low BMI is associated with increased risk of death from infection, acute respiratory failure, and CLAD after lung transplantation, whereas high BMI is associated with increased risk of death from primary graft dysfunction, acute respiratory failure, and CLAD.


Subject(s)
Lung Transplantation , Primary Graft Dysfunction , Respiratory Insufficiency , Adult , Humans , United States/epidemiology , Cause of Death , Body Mass Index , Retrospective Studies , Risk Factors , Primary Graft Dysfunction/etiology , Lung Transplantation/adverse effects , Proportional Hazards Models , Respiratory Insufficiency/etiology
17.
J Heart Lung Transplant ; 42(7): 892-904, 2023 07.
Article in English | MEDLINE | ID: mdl-36925382

ABSTRACT

BACKGROUND: Existing measures of frailty developed in community dwelling older adults may misclassify frailty in lung transplant candidates. We aimed to develop a novel frailty scale for lung transplantation with improved performance characteristics. METHODS: We measured the short physical performance battery (SPPB), fried frailty phenotype (FFP), Body Composition, and serum Biomarkers representative of putative frailty mechanisms. We applied a 4-step established approach (identify frailty domain variable bivariate associations with the outcome of waitlist delisting or death; build models sequentially incorporating variables from each frailty domain cluster; retain variables that improved model performance ability by c-statistic or AIC) to develop 3 candidate "Lung Transplant Frailty Scale (LT-FS)" measures: 1 incorporating readily available clinical data; 1 adding muscle mass, and 1 adding muscle mass and research-grade Biomarkers. We compared construct and predictive validity of LT-FS models to the SPPB and FFP by ANOVA, ANCOVA, and Cox proportional-hazard modeling. RESULTS: In 342 lung transplant candidates, LT-FS models exhibited superior construct and predictive validity compared to the SPPB and FFP. The addition of muscle mass and Biomarkers improved model performance. Frailty by all measures was associated with waitlist disability, poorer HRQL, and waitlist delisting/death. LT-FS models exhibited stronger associations with waitlist delisting/death than SPPB or FFP (C-statistic range: 0.73-0.78 vs. 0.57 and 0.55 for SPPB and FFP, respectively). Compared to SPPB and FFP, LT-FS models were generally more strongly associated with delisting/death and improved delisting/death net reclassification, with greater improvements with increasing LT-FS model complexity (range: 0.11-0.34). For example, LT-FS-Body Composition hazard ratio for delisting/death: 6.0 (95%CI: 2.5, 14.2), SPPB HR: 2.5 (95%CI: 1.1, 5.8), FFP HR: 4.3 (95%CI: 1.8, 10.1). Pre-transplant LT-FS frailty, but not SPPB or FFP, was associated with mortality after transplant. CONCLUSIONS: The LT-FS is a disease-specific physical frailty measure with face and construct validity that has superior predictive validity over established measures.


Subject(s)
Frailty , Lung Transplantation , Humans , Frailty/diagnosis , Prospective Studies , Biomarkers , Phenotype
18.
Am J Transplant ; 23(4): 531-539, 2023 04.
Article in English | MEDLINE | ID: mdl-36740192

ABSTRACT

Heterogeneous frailty pathobiology might explain the inconsistent associations observed between frailty and lung transplant outcomes. A Subphenotype analysis could refine frailty measurement. In a 3-center pilot cohort study, we measured frailty by the Short Physical Performance Battery, body composition, and serum biomarkers reflecting causes of frailty. We applied latent class modeling for these baseline data. Next, we tested class construct validity with disability, waitlist delisting/death, and early postoperative complications. Among 422 lung transplant candidates, 2 class model fit the best (P = .01). Compared with Subphenotype 1 (n = 333), Subphenotype 2 (n = 89) was characterized by systemic and innate inflammation (higher IL-6, CRP, PTX3, TNF-R1, and IL-1RA); mitochondrial stress (higher GDF-15 and FGF-21); sarcopenia; malnutrition; and lower hemoglobin and walk distance. Subphenotype 2 had a worse disability and higher risk of waitlist delisting or death (hazards ratio: 4.0; 95% confidence interval: 1.8-9.1). Of the total cohort, 257 underwent transplant (Subphenotype 1: 196; Subphenotype 2: 61). Subphenotype 2 had a higher need for take back to the operating room (48% vs 28%; P = .005) and longer posttransplant hospital length of stay (21 days [interquartile range: 14-33] vs 18 days [14-28]; P = .04). Subphenotype 2 trended toward fewer ventilator-free days, needing more postoperative extracorporeal membrane oxygenation and dialysis, and higher need for discharge to rehabilitation facilities (P ≤ .20). In this early phase study, we identified biological frailty Subphenotypes in lung transplant candidates. A hyperinflammatory, sarcopenic Subphenotype seems to be associated with worse clinical outcomes.


Subject(s)
Frailty , Lung Transplantation , Humans , Frailty/complications , Pilot Projects , Cohort Studies , Biomarkers
19.
Heart Lung ; 59: 165-172, 2023.
Article in English | MEDLINE | ID: mdl-36841013

ABSTRACT

BACKGROUND: There is considerable heterogeneity in symptom burden among lung transplant candidates that may not be explained by objective measures of illness severity. OBJECTIVES: This study aimed to characterize symptom burden, identify distinct profiles based on symptom burden and illness severity, and determine whether observed profiles are defined by differences in social determinates of health (SDOH). METHODS: This was a prospective study of adult lung transplant candidates. Symptoms were assessed within 3 months of transplant with the Memorial Symptom Assessment Scale (MSAS). MSAS subscale (physical and psychological) scores range 0-4 (higher=more symptom burden). The lung allocation score (LAS) (range 0-100) was our proxy measure of illness severity. The MSAS subscales and LAS were used as continuous indicators in a latent profile analysis to identify distinct symptom-illness severity profiles. Comparative statistics were used to identify SDOH differences among observed profiles. RESULTS: Among 93 candidates, 3 distinct symptom-illness severity profiles were identified: 71% had a mild profile in which mild symptoms (MSAS physical 0.49; MSAS psychological 0.57) paired with mild illness severity (LAS 38.59). Of the 29% mismatched participants, 9% had moderate symptoms (MSAS physical 0.88; MSAS psychological 1.47) but severe illness severity (LAS 88.02) and 20% had severe symptoms (MSAS physical 1.30; MSAS psychological 1.94) but mild illness severity (LAS 42.13). The two mismatch profiles were younger, more racially diverse, and had higher psychosocial risk scores. CONCLUSION: Symptom burden is heterogenous, does not always reflect objective measures of illness severity, and may be linked to SDOH.


Subject(s)
Lung Transplantation , Neoplasms , Adult , Humans , Neoplasms/diagnosis , Neoplasms/psychology , Prospective Studies , Severity of Illness Index , Physical Examination , Symptom Assessment , Quality of Life
20.
Pulm Circ ; 13(1): e12183, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36618711

ABSTRACT

Noninvasive assessment of pulmonary hemodynamics is often performed by echocardiographic estimation of the pulmonary artery systolic pressure (ePASP), despite limitations in the advanced lung disease population. Other noninvasive hemodynamic variables, such as echocardiographic pulmonary vascular resistance (ePVR), have not been studied in this population. We performed a retrospective analysis of 147 advanced lung disease patients who received both echocardiography and right heart catheterization for lung transplant evaluation. The ePVR was estimated by four previously described equations. Noninvasive and invasive hemodynamic parameters were compared in terms of correlation, agreement, and accuracy. The ePVR models strongly correlated with invasively determined PVR and had good accuracy with biases of <1 Wood units (WU), although with moderate precision and wide 95% limits of agreement varying from 5.9 to 7.8 Wood units. The ePVR models were accurate to within 1.9 WU in over 75% of patients. In comparison to the ePASP, ePVR models performed similarly in terms of correlation, accuracy, and precision when estimating invasive hemodynamics. In screening for pulmonary hypertension, ePVR models had equivalent testing characteristics to the ePASP. Mid-systolic notching of the right ventricular outflow tract Doppler signal identified a subgroup of 11 patients (7%) with significantly elevated PVR and mean pulmonary artery pressures without relying on the acquisition of a tricuspid regurgitation signal. Analysis of ePVR and determination of the notching pattern of the right ventricular outflow tract Doppler flow velocity envelope provide reliable insights into hemodynamics in advanced lung disease patients, although limitations in precision exist.

SELECTION OF CITATIONS
SEARCH DETAIL
...