Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
J Invest Dermatol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844128

ABSTRACT

Granuloma annulare (GA) is an idiopathic condition characterized by granulomatous inflammation in the skin. Prior studies have suggested that GA develops from various triggers, leading to a complex interplay involving innate and adaptive immunity, tissue remodeling, and fibrosis. Macrophages are the major immune cells comprising GA granulomas, however, the molecular drivers and inflammatory signaling cascade behind macrophage activation is poorly understood. Histologically, GA exhibits both palisaded and interstitial patterns on histology, however the molecular composition of GA at the spatial level remains unexplored. GA is a condition without FDA-approved therapies despite the significant impact of GA on quality of life. Spatial transcriptomics is a valuable tool for profiling localized, genome-wide gene expression changes across tissue with emerging applications in clinical medicine. To improve our understanding of the spatially localized gene expression patterns underlying GA, we profiled the spatial gene expression landscape from six patients with GA. Our findings revealed mixed Th1 and Th2 signals comprising the GA microenvironment and spatially distinct M1 and M2 macrophage polarization characteristics. IFN-γ and TNF signals emerged as important regulators of GA granulomatous inflammation and interleukin-32 emerged as a key driver of granulomatous inflammation. Overall, our spatial transcriptomics data indicate that GA exhibits mixed immune and macrophage polarization.

2.
Expert Opin Ther Targets ; 28(5): 419-435, 2024 May.
Article in English | MEDLINE | ID: mdl-38686865

ABSTRACT

INTRODUCTION: Collagen triple helix repeat containing 1 (CTHRC1) is a protein that has been implicated in pro-migratory pathways, arterial tissue-repair processes, and inhibition of collagen deposition via the regulation of multiple signaling cascades. Studies have also demonstrated an upregulation of CTHRC1 in multiple cancers where it has been linked to enhanced proliferation, invasion, and metastasis. However, the understanding of the exact role and mechanisms of CTHRC1 in cancer is far from complete. AREAS COVERED: This review focuses on analyzing the role of CTHRC1 in cancer as well as its associations with clinicopathologies and cancer-related processes and signaling. We have also summarized the available literature information regarding the role of CTHRC1 in tumor microenvironment and immune signaling. Finally, we have discussed the mechanisms associated with CTHRC1 regulations, and opportunities and challenges regarding the development of CTHRC1 as a potential target for cancer management. EXPERT OPINION: CTHRC1 is a multifaceted protein with critical roles in cancer progression and other pathological conditions. Its association with lower overall survival in various cancers, and impact on the tumor immune microenvironment make it an intriguing target for further research and potential therapeutic interventions in cancer.


Subject(s)
Disease Progression , Extracellular Matrix Proteins , Molecular Targeted Therapy , Neoplasms , Signal Transduction , Tumor Microenvironment , Humans , Neoplasms/pathology , Extracellular Matrix Proteins/metabolism , Animals , Up-Regulation , Cell Proliferation
3.
NPJ Precis Oncol ; 8(1): 6, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184733

ABSTRACT

Polo-like kinase 1 (PLK1), a serine/threonine kinase, is overexpressed in melanoma and its expression has been associated with poor disease prognosis. PLK1 has been shown to interact with NUMB, a NOTCH antagonist. However, the exact role of PLK1, NUMB, and NOTCH signaling in epithelial-mesenchymal transition (EMT) in melanoma progression is unclear. In this study, Affymetrix microarray analysis was performed to determine differentially expressed genes following shRNA-mediated knockdown of PLK1 in human melanoma cells that showed significant modulations in EMT and metastasis-related genes. Using multiple PLK1-modulated melanoma cell lines, we found that PLK1 is involved in the regulation of cell migration, invasion, and EMT via its kinase activity and NOTCH activation. In vitro kinase assay and mass spectrometry analysis demonstrated a previously unknown PLK1 phosphorylation site (Ser413) on NUMB. Overexpression of non-phosphorylatable (S413A) and phosphomimetic (S413D) mutants of NUMB in melanoma cells implicated the involvement of NUMB-S413 phosphorylation in cell migration and invasion, which was independent of NOTCH activation. To determine the clinical relevance of these findings, immunohistochemistry was performed using melanoma tissue microarray, which indicated a strong positive correlation between PLK1 and N-cadherin, a protein required for successful EMT. These findings were supported by TCGA analysis, where expression of high PLK1 with low NUMB or high NOTCH or N-cadherin showed a significant decrease in survival of melanoma patients. Overall, these results suggest a potential role of PLK1 in EMT, migration, and invasion of melanoma cells. Our findings support the therapeutic targeting of PLK1, NUMB, and NOTCH for melanoma management.

4.
Front Oncol ; 12: 880876, 2022.
Article in English | MEDLINE | ID: mdl-35515106

ABSTRACT

Melanoma is one of the seven most common cancers in the United States, and its incidence is still increasing. Since 2011, developments in targeted therapies and immunotherapies have been essential for significantly improving overall survival rates. Prior to the advent of targeted and immunotherapies, metastatic melanoma was considered a death sentence, with less than 5% of patients surviving more than 5 years. With the implementation of immunotherapies, approximately half of patients with metastatic melanoma now survive more than 5 years. Unfortunately, this also means that half of the patients with melanoma do not respond to current therapies and live less than 5 years after diagnosis. One major factor that contributes to lower response in this population is acquired or primary resistance to immunotherapies via tumor immune evasion. To improve the overall survival of melanoma patients new treatment strategies must be designed to minimize the risk of acquired resistance and overcome existing primary resistance. In recent years, many advances have been made in identifying and understanding the pathways that contribute to tumor immune evasion throughout the course of immunotherapy treatment. In addition, results from clinical trials focusing on treating patients with immunotherapy-resistant melanoma have reported some initial findings. In this review, we summarize important mechanisms that drive resistance to immunotherapies in patients with cutaneous melanoma. We have focused on tumor intrinsic characteristics of resistance, altered immune function, and systemic factors that contribute to immunotherapy resistance in melanoma. Exploring these pathways will hopefully yield novel strategies to prevent acquired resistance and overcome existing resistance to immunotherapy treatment in patients with cutaneous melanoma.

5.
Prostate ; 82(9): 957-969, 2022 06.
Article in English | MEDLINE | ID: mdl-35333404

ABSTRACT

BACKGROUND: Identification of novel molecular target(s) is important for designing newer mechanistically driven approaches for the treatment of prostate cancer (PCa), which is one of the main causes of morbidity and mortality in men. In this study, we determined the role of polo-like kinase 4 (PLK4), which regulates centriole duplication and centrosome amplification (CA), in PCa. MATERIALS AND METHODS: Employing human PCa tissue microarrays, we assessed the prevalence of CA, correlated with Gleason score, and estimated major causes of CA in PCa (cell doubling vs. centriole overduplication) by staining for mother/mature centrioles. We also assessed PLK4 expression and correlated it with CA in human PCa tissues and cell lines. Further, we determined the effects of PLK4 inhibition in human PCa cells. RESULTS: Compared to benign prostate, human PCa demonstrated significantly higher CA, which was also positively correlated with the Gleason score. Further, most cases of CA were found to arise by centriole overduplication rather than cell doubling events (e.g., cytokinesis failure) in PCa. In addition, PLK4 was overexpressed in human PCa cell lines and tumors. Moreover, PLK4 inhibitors CFI-400945 and centrinone-B inhibited cell growth, viability, and colony formation of both androgen-responsive and androgen-independent PCa cell lines. PLK4 inhibition also induced cell cycle arrest and senescence in human PCa cells. CONCLUSIONS: CA is prevalent in PCa and arises predominantly by centriole overduplication as opposed to cell doubling events. Loss of centrioles is cellular stress that can promote senescence and suggests that PLK4 inhibition may be a viable therapeutic strategy in PCa.


Subject(s)
Androgens , Prostatic Neoplasms , Protein Serine-Threonine Kinases , Androgens/metabolism , Cell Cycle Proteins/metabolism , Centrioles/metabolism , Centrosome/metabolism , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism
6.
Transl Oncol ; 16: 101332, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34973570

ABSTRACT

Polo-like kinase I (PLK1), a cell cycle regulating kinase, has been shown to have oncogenic function in several cancers. Although PLK1 inhibitors, such as BI2536, BI6727 (volasertib) and NMS-1286937 (onvansertib) are generally well-tolerated with a favorable pharmacokinetic profile, clinical successes are limited due to partial responses in cancer patients, especially those in advanced stages. Recently, combination therapies targeting multiple pathways are being tested for cancer management. In this review, we first discuss structure and function of PLK1, role of PLK1 in cancers, PLK1 specific inhibitors, and advantages of using combination therapy versus monotherapy followed by a critical account on PLK1-based combination therapies in cancer treatments, especially highlighting recent advancements and challenges. PLK1 inhibitors in combination with chemotherapy drugs and targeted small molecules have shown superior effects against cancer both in vitro and in vivo. PLK1-based combination therapies have shown increased apoptosis, disrupted cell cycle, and potential to overcome resistance in cancer cells/tissues over monotherapies. Further, with successes in preclinical experiments, researchers are validating such approaches in clinical trials. Although PLK1-based combination therapies have achieved initial success in clinical studies, there are examples where they have failed to improve patient survival. Therefore, further research is needed to identify and validate novel biologically informed co-targets for PLK1-based combinatorial therapies. Employing a network-based analysis, we identified potential PLK1 co-targets that could be examined further. In addition, understanding the mechanisms of synergism between PLK1 inhibitors and other agents may lead to a better approach on which agents to pair with PLK1 inhibition for optimum cancer treatment.

7.
J Invest Dermatol ; 142(4): 1145-1157.e7, 2022 04.
Article in English | MEDLINE | ID: mdl-34597611

ABSTRACT

Novel therapeutic strategies are required for the effective and lasting treatment of metastatic melanoma, one of the deadliest skin malignancies. In this study, we determined the antimelanoma efficacy of 4'-bromo-resveratrol (4'-BR), which is a small-molecule dual inhibitor of SIRT1 and SIRT3, in a BrafV600E/PtenNULL mouse model that recapitulates human disease, including metastases. Tumors were induced by topical application of 4-hydroxy-tamoxifen on shaved backs of mice aged 10 weeks, and the effects of 4'-BR (5‒30 mg/kg of body weight, intraperitoneally, 3 days per week for 5 weeks) were assessed on melanoma development and progression. We found that 4'-BR at a dose of 30 mg/kg significantly reduced the size and volume of primary melanoma tumors as well as lung metastasis with no adverse effects. Furthermore, mechanistic studies on tumors showed significant modulation in the markers of proliferation, survival, and melanoma progression. Because SIRT1 and SIRT3 are linked to immunomodulation, we performed differential gene expression analysis using a PanCancer Immune Profiling Panel (770 genes). Our data showed that 4'-BR significantly downregulated the genes related to metastasis promotion, chemokine/cytokine regulation, and innate/adaptive immune functions. Overall, inhibition of SIRT1 and SIRT3 by 4'-BR is a promising antimelanoma therapy with antimetastatic and immunomodulatory activities warranting further detailed studies, including clinical investigations.


Subject(s)
Melanoma , Sirtuin 3 , Animals , Cell Line, Tumor , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Mice , Mice, Knockout , Proto-Oncogene Proteins B-raf/genetics , Sirtuin 1/genetics , Sirtuin 3/genetics
8.
Front Immunol ; 13: 1051472, 2022.
Article in English | MEDLINE | ID: mdl-36741360

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin disease with significant health/economic burdens. Existing therapies are not fully effective, necessitating development of new approaches for AD management. Here, we report that dietary grape powder (GP) mitigates AD-like symptoms in 2,4-dinitrofluorobenzene (DNFB)-induced AD in NC/NgaTndCrlj mice. Using prevention and intervention protocols, we tested the efficacy of 3% and 5% GP-fortified diet in a 13-weeks study. We found that GP feeding markedly inhibited development and progression of AD-like skin lesions, and caused reduction in i) epidermal thickness, mast cell infiltration, ulceration, excoriation and acanthosis in dorsal skin, ii) spleen weight, extramedullary hematopoiesis and lymph nodes sizes, and iii) ear weight and IgE levels. We also found significant modulations in 15 AD-associated serum cytokines/chemokines. Next, using quantitative global proteomics, we identified 714 proteins. Of these, 68 (normal control) and 21 (5% GP-prevention) were significantly modulated (≥2-fold) vs AD control (DNFB-treated) group, with many GP-modulated proteins reverting to normal levels. Ingenuity pathway analysis of GP-modulated proteins followed by validation using ProteinSimple identified changes in acute phase response signaling (FGA, FGB, FGG, HP, HPX, LRG1). Overall, GP supplementation inhibited DNFB-induced AD in NC/NgaTndCrlj mice in both prevention and intervention trials, and should be explored further.


Subject(s)
Dermatitis, Atopic , Skin Diseases , Vitis , Mice , Animals , Dermatitis, Atopic/metabolism , Dinitrofluorobenzene , Diet
9.
Nutrients ; 13(6)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070833

ABSTRACT

Studies have suggested an important role of the trace element zinc (Zn) in prostate biology and functions. Zn has been shown to exist in very high concentrations in the healthy prostate and is important for several prostatic functions. In prostate cancer (PCa), Zn levels are significantly decreased and inversely correlated with disease progression. Ideally, restoration of adequate Zn levels in premalignant/malignant prostate cells could abort prostate malignancy. However, studies have shown that Zn supplementation is not an efficient way to significantly increase Zn concentrations in PCa. Based on a limited number of investigations, the reason for the lower levels of Zn in PCa is believed to be the dysregulation of Zn transporters (especially ZIP and ZnT family of proteins), metallothioneins (for storing and releasing Zn), and their regulators (e.g., Zn finger transcription factor RREB1). Interestingly, the level of Zn in cells has been shown to be modulated by naturally occurring dietary phytochemicals. In this review, we discussed the effect of selected phytochemicals (quercetin, resveratrol, epigallocatechin-3-gallate and curcumin) on Zn functioning and proposes that Zn in combination with specific dietary phytochemicals may lead to enhanced Zn bioaccumulation in the prostate, and therefore, may inhibit PCa.


Subject(s)
Homeostasis/physiology , Phytochemicals/metabolism , Phytochemicals/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Zinc/metabolism , Humans , Male , Prostatic Neoplasms/physiopathology
10.
Front Oncol ; 11: 676077, 2021.
Article in English | MEDLINE | ID: mdl-33937086

ABSTRACT

The mitochondrial sirtuin SIRT3 plays key roles in cellular metabolism and energy production, which makes it an obvious target for the management of cancer, including melanoma. Previously, we have demonstrated that SIRT3 was constitutively upregulated in human melanoma and its inhibition resulted in anti-proliferative effects in vitro in human melanoma cells and in vivo in human melanoma xenografts. In this study, we expanded our data employing knockdown and overexpression strategies in cell culture and mouse xenografts to further validate and establish the pro-proliferative function of SIRT3 in melanocytic cells, and its associated potential mechanisms, especially focusing on the metabolic regulation. We found that short-hairpin RNA (shRNA) mediated SIRT3 knockdown in G361 melanoma cells showed diminished tumorigenesis in immunodeficient Nu/Nu mice. Conversely, SIRT3 overexpressing Hs294T melanoma cells showed increased tumor growth. These effects were consistent with changes in markers of proliferation (PCNA), survival (Survivin) and angiogenesis (VEGF) in xenografted tissues. Further, in in vitro culture system, we determined the effect of SIRT3 knockdown on glucose metabolism in SK-MEL-2 cells, using a PCR array. SIRT3 knockdown caused alterations in a total of 37 genes involved in the regulation and enzymatic pathways of glucose (32 genes) and glycogen (5 genes) metabolism. Functions annotation of these identified genes, using the ingenuity pathway analysis (IPA), predicted cumulative actions of decreased cell viability/proliferation, tumor growth and reactive oxygen species (ROS), and increased apoptosis in response to SIRT3 knockdown. Further, IPA gene network analysis of SIRT3 modulated genes revealed the interactions among these genes in addition to several melanoma-associated genes. Sirtuin pathway was identified as one of the top canonical pathways showing the interaction of SIRT3 with metabolic regulatory genes along with other sirtuins. IPA analysis also predicted the inhibition of HIF1α, PKM, KDM8, PPARGC1A, mTOR, and activation of P53 and CLPP; the genes involved in major cancer/melanoma-associated signaling events. Collectively, these results suggest that SIRT3 inhibition affects cellular metabolism, to impart an anti-proliferative response against melanoma.

11.
Molecules ; 26(5)2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33802331

ABSTRACT

Immunomodulation of the tumor microenvironment is emerging as an important area of research for the treatment of cancer patients. Several synthetic and natural agents are being investigated for their ability to enhance the immunogenic responses of immune cells present in the tumor microenvironment to impede tumor cell growth and dissemination. Among them, resveratrol, a stilbenoid found in red grapes and many other natural sources, has been studied extensively. Importantly, resveratrol has been shown to possess activity against various human diseases, including cancer. Mechanistically, resveratrol has been shown to regulate an array of signaling pathways and processes involving oxidative stress, inflammation, apoptosis, and several anticancer effects. Furthermore, recent research suggests that resveratrol can regulate various cellular signaling events including immune cell regulation, cytokines/chemokines secretion, and the expression of several other immune-related genes. In this review, we have summarized recent findings on resveratrol's effects on immune regulatory cells and associated signaling in various cancer types. Numerous immunomodulatory effects of resveratrol suggest it may be useful in combination with other cancer therapies including immunotherapy for effective cancer management.


Subject(s)
Antioxidants/pharmacology , Neoplasms/drug therapy , Neoplasms/immunology , Resveratrol/pharmacology , Tumor Microenvironment/immunology , Animals , Humans , Immunomodulation , Neoplasms/pathology , Tumor Microenvironment/drug effects
12.
Mol Cancer Ther ; 20(1): 161-172, 2021 01.
Article in English | MEDLINE | ID: mdl-33177155

ABSTRACT

Melanoma is one of the most serious forms of skin cancer, and its increasing incidence coupled with nonlasting therapeutic options for metastatic disease highlights the need for additional novel approaches for its management. In this study, we determined the potential interactions between polo-like kinase 1 (PLK1, a serine/threonine kinase involved in mitotic regulation) and NOTCH1 (a type I transmembrane protein deciding cell fate during development) in melanoma. Employing an in-house human melanoma tissue microarray (TMA) containing multiple cases of melanomas and benign nevi, coupled with high-throughput, multispectral quantitative fluorescence imaging analysis, we found a positive correlation between PLK1 and NOTCH1 in melanoma. Furthermore, The Cancer Genome Atlas database analysis of patients with melanoma showed an association of higher mRNA levels of PLK1 and NOTCH1 with poor overall, as well as disease-free, survival. Next, utilizing small-molecule inhibitors of PLK1 and NOTCH (BI 6727 and MK-0752, respectively), we found a synergistic antiproliferative response of combined treatment in multiple human melanoma cells. To determine the molecular targets of the overall and synergistic responses of combined PLK1 and NOTCH inhibition, we conducted RNA-sequencing analysis employing a unique regression model with interaction terms. We identified the modulations of several key genes relevant to melanoma progression/metastasis, including MAPK, PI3K, and RAS, as well as some new genes such as Apobec3G, BTK, and FCER1G, which have not been well studied in melanoma. In conclusion, our study demonstrated a synergistic antiproliferative response of concomitant targeting of PLK1 and NOTCH in melanoma, unraveling a potential novel therapeutic approach for detailed preclinical/clinical evaluation.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Melanoma/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Receptors, Notch/antagonists & inhibitors , Receptors, Notch/metabolism , Signal Transduction , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Gene Ontology , Genetic Pleiotropy , Humans , Melanoma/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Small Molecule Libraries/pharmacology , Survival Analysis , Polo-Like Kinase 1
14.
Cancers (Basel) ; 12(8)2020 Aug 02.
Article in English | MEDLINE | ID: mdl-32748838

ABSTRACT

Prostate Cancer (PCa) is a leading cause of cancer-related morbidity and mortality in men. Therefore, novel mechanistically-driven approaches are needed for PCa management. Here, we determined the effects of grape antioxidants quercetin and/or resveratrol (60 and 600 mg/kg, respectively, in diet) against PCa in Transgenic Adenocarcinoma of Mouse Prostate (TRAMP)-model in prevention and intervention settings. We found resveratrol alone and in combination significantly inhibited prostate tumorigenesis in prevention setting, while the same was seen only in combination after intervention. The observed effects were associated with marked inhibition in proliferation, oxidative stress, and tumor survival markers, and induced apoptosis markers. Utilizing PCa PCR array analysis with prevention tumor tissues, we identified that quercetin-resveratrol modulates genes involved in promoter methylation, cell cycle, apoptosis, fatty acid metabolism, transcription factors, androgen response, PI3K/AKT and PTEN signaling. Ingenuity Pathway Analysis (IPA) identified IGF1 and BCL2 as central players in two gene networks. Functional annotation predicted increased apoptosis and inhibited cell viability/proliferation, hyperplasia, vasculogenesis, and angiogenesis with dual treatment. Furthermore, IPA predicted upstream inhibition of major PCa signaling VEGF, Ca2+, PI3K, CSF2, PTH). Based on PCR array, we identified decreased levels of EGFR, EGR3, and IL6, and increased levels of IGFBP7 and NKX3.1, overall supporting anti-PCa effects of quercetin-resveratrol.

15.
Cancers (Basel) ; 12(7)2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630288

ABSTRACT

Non-melanoma skin cancers (NMSCs) are the most diagnosed cancers in the US and occur more frequently in males. We previously demonstrated chemoprotective effects of dietary grape powder (GP) against UVB-mediated skin tumorigenesis in female SKH-1 mice. To expand on this, here, we determined the effects of GP in a short-term UVB exposure protocol (0 or 5% GP, followed by UVB every other day for 2 weeks) in male and female SKH-1 mice, as well as explored any sex-related differences in UVB carcinogenesis via male SKH-1 mice (0, 3, or 5% GP; UVB twice weekly for 28 weeks). In the short-term study, we found that GP protects against early-stage epithelial hyperplasia and mast cell infiltration in both sexes. In the long term, GP markedly reduced tumor counts and malignant conversion, along with significant decreases in mast cell infiltration, serum IgE and Eotaxin. We also found inhibition of P38 phosphorylation and reduced PCNA, Ki67 and BCL2 levels, suggesting that the anti-inflammatory effects of GP inhibits P38, acting as an upstream regulator to inhibit proliferation and reduce tumor cell survival. Together, GP appears to protect against UVB-mediated skin damage and carcinogenesis in SKH-1 mice and should be explored further as a supplement for NMSC prevention.

16.
Photochem Photobiol ; 96(6): 1314-1320, 2020 11.
Article in English | MEDLINE | ID: mdl-32621766

ABSTRACT

Melanoma is one of the most aggressive, potentially fatal forms of skin cancer and has been shown to be associated with solar ultraviolet radiation-dependent initiation and progression. Despite remarkable recent advances with targeted and immune therapeutics, lasting and recurrence-free survival remain significant concerns. Therefore, additional novel mechanism-based approaches are needed for effective melanoma management. The sirtuin SIRT6 appears to have a pro-proliferative function in melanocytic cells. In this study, we determined the effects of genetic manipulation of SIRT6 in human melanoma cells, in vitro and in vivo. Our data demonstrated that CRISPR/Cas9-mediated knockout (KO) of SIRT6 in A375 melanoma cells resulted in a significant (1) decrease in growth, viability and clonogenic survival and (2) induction of G1-phase cell cycle arrest. Further, employing a RT2 Profiler PCR array containing 84 key transformation and tumorigenesis genes, we found that SIRT6 KO resulted in modulation of genes involved in angiogenesis, apoptosis, cellular senescence, epithelial-to-mesenchymal transition, hypoxia signaling and telomere maintenance. Finally, we found significantly decreased tumorigenicity of SIRT6 KO A375 cells in athymic nude mice. Our data provide strong evidence that SIRT6 promotes melanoma cell survival, both in vitro and in vivo, and could be exploited as a target for melanoma management.


Subject(s)
CRISPR-Cas Systems , Cell Proliferation/genetics , Melanoma/pathology , Sirtuins/genetics , Skin Neoplasms/pathology , Animals , Female , Gene Knockdown Techniques , Humans , In Vitro Techniques , Male , Melanoma/genetics , Mice , Mice, Nude , Skin Neoplasms/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
17.
Photochem Photobiol ; 96(5): 973-980, 2020 09.
Article in English | MEDLINE | ID: mdl-32124989

ABSTRACT

Mammalian sirtuins (SIRTs 1-7) are a family of NAD+-dependent deacetylases with distinct subcellular localization and biological functions that regulate various important cellular processes. Among these, SIRTs -3, -4 and -5 are located in the mitochondria and have been implicated in caloric restriction, oxidative stress, aging and various human diseases. Emerging evidence has found dysregulation of mitochondrial sirtuins in multiple dermatological conditions, including responses to ultraviolet radiation (UVR), suggesting their importance in maintaining skin health. In this review, we discuss the roles and implications of mitochondrial sirtuins in cutaneous cellular processes, and their emerging potential as a target for the management of skin diseases, including skin cancer. Among mitochondrial sirtuins, SIRT3 is the most studied and linked to multiple skin conditions and diseases (keratinocyte differentiation, wound healing, chronological aging, UVR and ozone response, systemic sclerosis, melanoma, basal cell carcinoma (BCC) and squamous cell carcinoma (SCC)). SIRT4 has been connected to keratinocyte differentiation, chronological aging, UVR response, alopecia, BCC and SCC. Further, SIRT5 has been associated with keratinocyte differentiation, melanoma, BCC and SCC. Overall, while there is compelling evidence for the involvement of mitochondrial sirtuins in skin, additional detailed studies are needed to understand their exact roles in skin and skin cancers.


Subject(s)
Mitochondria/metabolism , Sirtuins/metabolism , Skin Neoplasms/metabolism , Skin/metabolism , Cell Differentiation/physiology , Humans , Keratinocytes/cytology , Keratinocytes/drug effects , Keratinocytes/radiation effects , Ozone/toxicity , Sirtuins/physiology , Skin/drug effects , Skin/radiation effects , Skin Aging , Skin Neoplasms/pathology , Ultraviolet Rays
18.
Transl Oncol ; 13(2): 146-156, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31865177

ABSTRACT

Skin is arguably the largest organ of the body and is continuously subjected to intrinsic, extrinsic, and environmental stresses. Therefore, skin developed elaborate mechanisms to maintain homeostasis, including antioxidant, antiinflammatory, and DNA damage repair capabilities. However, repeated and excessive stresses can overwhelm these systems, causing serious cutaneous damages, including skin carcinogenesis. Phytonutrients present in the diet possess a myriad of health-promoting effects by protecting skin from damaging free radicals as well as by other mechanisms. Although many chemoprotective phytonutrients have been shown to be efficacious individually, a combination of multiple agents could have synergistic response in curtailing or preventing cutaneous damages. Here, we discuss the benefits of natural amalgamation of phytonutrients in select fruits against skin damage including carcinogenesis. However, a majority of these studies have been done in preclinical models. Therefore, clinical studies are needed to determine the human relevance of the available preclinical data, especially in the human population who are at higher risk for skin cancers (e.g., organ transplant patients). In addition, detailed well-structured preclinical animal studies in the models of high-risk skin carcinogenesis could also be useful toward informing the design for human trials.

19.
J Proteome Res ; 18(10): 3741-3751, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31487184

ABSTRACT

We recently showed that dietary grape powder (GP) imparts considerable protection against ultraviolet B (UVB)-mediated skin carcinogenesis in SKH-1 mice. To determine molecular mechanisms of this response, we employed tandem mass tag (TMT) quantitative global proteomics approach on skin tumors from mice exposed to 180 mJ/cm2 UVB twice per week and fed control or 5% GP diet. We found 2629 proteins modulated by GP feeding, with 34 identified using stringent cutoffs (false discovery rate (FDR) q-value ≤ 0.1, fold change ≥ 1.2, p-value ≤ 0.05, ≥ 3 unique peptides). Ingenuity Pathway Analysis helped identify seven proteins involved in protein ubiquitination, including the deubiquitinase UCHL5 and 6 subunits of the 20S proteasome (PSMA1,3,4,6 and PSMB4,7). A second data set without the FDR q-value identified 239 modulated proteins, seven of which are involved in protein ubiquitination. Further, 14 proteins involved in acute phase response signaling were modulated >1.5-fold, including acute phase proteins APCS, FGA, FGB, HP, HPX, and RBP1. Evaluation of upstream regulators found inhibition of ERK1/2 phosphorylation and NF-κB p65, and an increase in IκBα in GP-treated tumors. Overall, our data suggested that GP consumption may mitigate tumorigenesis by enhancing protein ubiquitination and degradation caused by oxidative stress, and manipulates an otherwise tumor-promoting anti-inflammatory environment.


Subject(s)
Drug Delivery Systems , Proteomics/methods , Skin Neoplasms/prevention & control , Vitis/chemistry , Animals , Chemoprevention/methods , Diet , Mice , Oxidative Stress , Proteolysis , Skin Neoplasms/etiology , Tandem Mass Spectrometry , Ubiquitination , Ultraviolet Rays/adverse effects
20.
Mol Carcinog ; 58(10): 1876-1885, 2019 10.
Article in English | MEDLINE | ID: mdl-31292999

ABSTRACT

Sirtuin-1 and -3 (SIRT1 and SIRT3) are important nicotinamide adenine dinucleotide (NAD+ )-dependent deacetylases known to regulate a variety of cellular functions. Studies have shown that SIRT1 and SIRT3 were overexpressed in human melanoma cells and tissues and their inhibition resulted in a significant antiproliferative response in human melanoma cells and antitumor response in a mouse xenograft model of melanoma. In this study, we determined the antiproliferative efficacy of a newly identified dual small molecule inhibitor of SIRT1 and SIRT3, 4'-bromo-resveratrol (4'-BR), in human melanoma cell lines (G361, SK-MEL-28, and SK-MEL-2). Our data demonstrate that 4'-BR treatment of melanoma cells resulted in (a) decrease in proliferation and clonogenic survival; (b) induction of apoptosis accompanied by a decrease in procaspase-3, procaspase-8, and increase in the cleavage of caspase-3 and poly (ADP-ribose) polymerase (PARP); (c) marked downregulation of proliferating cell nuclear antigen (PCNA); and (d) inhibition of melanoma cell migration. Further, 4'-BR caused a G0/G1 phase arrest of melanoma cells that was accompanied by an increase in WAF-1/P21 and decrease in Cyclin D1/Cyclin-dependent kinase 6 protein levels. Furthermore, we found that 4'-BR causes a decrease in lactate production, glucose uptake, and NAD+ /NADH ratio. These responses were accompanied by downregulation in lactate dehydrogenase A and glucose transporter 1 in melanoma cells. Collectively, our data suggest that dual inhibition of SIRT1 and SIRT3 using 4'-BR imparted antiproliferative effects in melanoma cells through a metabolic reprogramming and affecting the cell cycle and apoptosis signaling. Therefore, concomitant pharmacological inhibition of SIRT1 and SIRT3 needs further investigation for melanoma management.


Subject(s)
Melanoma/drug therapy , Resorcinols/pharmacology , Sirtuin 1/genetics , Sirtuin 3/genetics , Stilbenes/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cellular Reprogramming/drug effects , Cellular Reprogramming/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lactic Acid/metabolism , Melanoma/genetics , Melanoma/pathology , Mitochondria/drug effects , Mitochondria/genetics , Sirtuin 1/antagonists & inhibitors , Sirtuin 3/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...