Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 40: e20240008, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38952174

ABSTRACT

The numerous and varied forms of neurodegenerative illnesses provide a considerable challenge to contemporary healthcare. The emergence of artificial intelligence has fundamentally changed the diagnostic picture by providing effective and early means of identifying these crippling illnesses. As a subset of computational intelligence, machine-learning algorithms have become very effective tools for the analysis of large datasets that include genetic, imaging, and clinical data. Moreover, multi-modal data integration, which includes information from brain imaging (MRI, PET scans), genetic profiles, and clinical evaluations, is made easier by computational intelligence. A thorough knowledge of the course of the illness is made possible by this consolidative method, which also facilitates the creation of predictive models for early medical evaluation and outcome prediction. Furthermore, there has been a great deal of promise shown by the use of artificial intelligence to neuroimaging analysis. Sophisticated image processing methods combined with machine learning algorithms make it possible to identify functional and structural anomalies in the brain, which often act as early indicators of neurodegenerative diseases. This chapter examines how computational intelligence plays a critical role in improving the diagnosis of neurodegenerative diseases such as Parkinson's, Alzheimer's, etc. To sum up, computational intelligence provides a revolutionary approach for improving the identification of neurodegenerative illnesses. In the battle against these difficult disorders, embracing and improving these computational techniques will surely pave the path for more individualized therapy and more therapies that are successful.


Subject(s)
Computational Biology , Machine Learning , Neurodegenerative Diseases , Neuroimaging , Humans , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/diagnostic imaging , Computational Biology/methods , Neuroimaging/methods , Algorithms , Artificial Intelligence , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods
2.
Bioorg Med Chem ; 19(6): 1950-8, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21353569

ABSTRACT

Xanthine oxidase is a complex molybdoflavoprotein that catalyses the hydroxylation of xanthine to uric acid. Fifty three analogues of 1-acetyl-3,5-diaryl-4,5-dihydro(1H)pyrazoles were rationally designed and synthesized and evaluated for in vitro xanthine oxidase inhibitory activity for the first time. Some notions about structure activity relationships are presented. Six compounds 41, 42, 44, 46, 55 and 59 were found to be most active against XO with IC(50) ranging from 5.3 µM to 15.2 µM. The compound 59 emerged as the most potent XO inhibitor (IC(50)=5.3 µM). Some of the important interactions of 59 with the amino acid residues of active site of XO have been figured out by molecular modeling.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Pyrazoles/chemistry , Xanthine Oxidase/antagonists & inhibitors , Binding Sites , Catalytic Domain , Computer Simulation , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Isomerism , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Structure-Activity Relationship , Xanthine Oxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL