Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
BMC Biol ; 19(1): 198, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34503492

ABSTRACT

BACKGROUND: Deciphering the functions of Y chromosome in mammals has been slow owing to the presence of repeats. Some of these repeats transcribe coding RNAs, the roles of which have been studied. Functions of the noncoding transcripts from Y chromosomal repeats however, remain unclear. While a majority of the genes expressed during spermatogenesis are autosomal, mice with different deletions of the long arm of the Y chromosome (Yq) were previously also shown to be characterized by subfertility, sterility and sperm abnormalities, suggesting the presence of effectors of spermatogenesis at this location. Here we report a set of novel noncoding RNAs from mouse Yq and explore their connection to some of the autosomal genes expressed in testis. RESULTS: We describe a set of novel mouse male-specific Y long arm (MSYq)-derived long noncoding (lnc) transcripts, named Pirmy and Pirmy-like RNAs. Pirmy shows a large number of splice variants in testis. We also identified Pirmy-like RNAs present in multiple copies at different loci on mouse Y chromosome. Further, we identified eight differentially expressed autosome-encoded sperm proteins in a mutant mouse strain, XYRIIIqdel (2/3 Yq-deleted). Pirmy and Pirmy-like RNAs have homology to 5'/3'UTRs of these deregulated autosomal genes. Several lines of experiments show that these short homologous stretches correspond to piRNAs. Thus, Pirmy and Pirmy-like RNAs act as templates for several piRNAs. In vitro functional assays reveal putative roles for these piRNAs in regulating autosomal genes. CONCLUSIONS: Our study elucidates a set of autosomal genes that are potentially regulated by MSYq-derived piRNAs in mouse testis. Sperm phenotypes from the Yq-deleted mice seem to be similar to that reported in inter-specific male-sterile hybrids. Taken together, this study provides novel insights into possible role of MSYq-derived ncRNAs in male sterility and speciation.


Subject(s)
RNA, Nuclear , RNA, Untranslated , Testis , Animals , Gene Expression , Male , Mice , RNA, Small Interfering , RNA, Untranslated/physiology , Testis/metabolism , Y Chromosome/genetics
2.
Sci Rep ; 10(1): 4618, 2020 03 12.
Article in English | MEDLINE | ID: mdl-32165662

ABSTRACT

The Indian cheetah was hunted to extinction by the mid-20th century. While analysis of 139 bp of mitochondrial DNA (mtDNA) has confirmed that the Indian cheetah was part of the Asiatic subspecies (Acinonyx jubatus venaticus), the detailed relationships between cheetah populations remains unclear due to limited genetic data. We clarify these relationships by studying larger fragments of cheetah mtDNA, both from an Indian cheetah museum specimen and two African cheetah, one modern and one historic, imported into India at different times. Our results suggest that the most recent common ancestor of cheetah mtDNA is approximately twice as ancient as currently recognised. The Indian and Southeast African (Acinonyx jubatus jubatus) cheetah mtDNA diverged approximately 72 kya, while the Southeast and Northeast African (Acinonyx jubatus soemmeringii) cheetah mtDNA diverged around 139 kya. Additionally, the historic African cheetah sampled from India proved to have an A. j. jubatus haplotype, suggesting a hitherto unrecognised South African route of cheetah importation into India in the 19th century. Together, our results provide a deeper understanding of the relationships between cheetah subspecies, and have important implications for the conservation of A. j. venaticus and potential reintroduction of cheetahs into India.


Subject(s)
Acinonyx/classification , Acinonyx/genetics , DNA, Mitochondrial , Extinction, Biological , Genetic Variation , Genetics, Population , Africa , Animals , India , Phylogeny , Phylogeography
3.
Hum Genet ; 137(2): 129-139, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29356938

ABSTRACT

The rugged topography of the Himalayan region has hindered large-scale human migrations, population admixture and assimilation. Such complexity in geographical structure might have facilitated the existence of several small isolated communities in this region. We have genotyped about 850,000 autosomal markers among 35 individuals belonging to the four major populations inhabiting the Himalaya and adjoining regions. In addition, we have genotyped 794 individuals belonging to 16 ethnic groups from the same region, for uniparental (mitochondrial and Y chromosomal DNA) markers. Our results in the light of various statistical analyses suggest a closer link of the Himalayan and adjoining populations to East Asia than their immediate geographical neighbours in South Asia. Allele frequency-based analyses likely support the existence of a specific ancestry component in the Himalayan and adjoining populations. The admixture time estimate suggests a recent westward migration of populations living to the East of the Himalaya. Furthermore, the uniparental marker analysis among the Himalayan and adjoining populations reveal the presence of East, Southeast and South Asian genetic signatures. Interestingly, we observed an antagonistic association of Y chromosomal haplogroups O3 and D clines with the longitudinal distance. Thus, we summarise that studying the Himalayan and adjoining populations is essential for a comprehensive reconstruction of the human evolutionary and ethnolinguistic history of eastern Eurasia.


Subject(s)
Chromosomes, Human, Y/genetics , DNA, Mitochondrial/genetics , Genetic Variation , Genetics, Population , Asia , Asian People , Ethnicity/genetics , Gene Frequency , Haplotypes/genetics , Humans , Phylogeny , Polymorphism, Single Nucleotide/genetics
4.
Nat Genet ; 49(9): 1403-1407, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28714977

ABSTRACT

The more than 1.5 billion people who live in South Asia are correctly viewed not as a single large population but as many small endogamous groups. We assembled genome-wide data from over 2,800 individuals from over 260 distinct South Asian groups. We identified 81 unique groups, 14 of which had estimated census sizes of more than 1 million, that descend from founder events more extreme than those in Ashkenazi Jews and Finns, both of which have high rates of recessive disease due to founder events. We identified multiple examples of recessive diseases in South Asia that are the result of such founder events. This study highlights an underappreciated opportunity for decreasing disease burden among South Asians through discovery of and testing for recessive disease-associated genes.


Subject(s)
Disease/genetics , Founder Effect , Genetic Predisposition to Disease/genetics , Genetics, Population/methods , Algorithms , Asia , Asian People/genetics , Disease/classification , Gene Frequency , Genes, Recessive/genetics , Genetic Predisposition to Disease/ethnology , Genome-Wide Association Study , Genotype , Geography , Haplotypes , Humans , Models, Genetic , Polymorphism, Single Nucleotide , Principal Component Analysis
5.
Genome Biol ; 18(1): 110, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28615043

ABSTRACT

BACKGROUND: The Parsis are one of the smallest religious communities in the world. To understand the population structure and demographic history of this group in detail, we analyzed Indian and Pakistani Parsi populations using high-resolution genetic variation data on autosomal and uniparental loci (Y-chromosomal and mitochondrial DNA). Additionally, we also assayed mitochondrial DNA polymorphisms among ancient Parsi DNA samples excavated from Sanjan, in present day Gujarat, the place of their original settlement in India. RESULTS: Among present-day populations, the Parsis are genetically closest to Iranian and the Caucasus populations rather than their South Asian neighbors. They also share the highest number of haplotypes with present-day Iranians and we estimate that the admixture of the Parsis with Indian populations occurred ~1,200 years ago. Enriched homozygosity in the Parsi reflects their recent isolation and inbreeding. We also observed 48% South-Asian-specific mitochondrial lineages among the ancient samples, which might have resulted from the assimilation of local females during the initial settlement. Finally, we show that Parsis are genetically closer to Neolithic Iranians than to modern Iranians, who have witnessed a more recent wave of admixture from the Near East. CONCLUSIONS: Our results are consistent with the historically-recorded migration of the Parsi populations to South Asia in the 7th century and in agreement with their assimilation into the Indian sub-continent's population and cultural milieu "like sugar in milk". Moreover, in a wider context our results support a major demographic transition in West Asia due to the Islamic conquest.


Subject(s)
Chromosomes, Human, Y/genetics , DNA, Mitochondrial/genetics , Ethnicity/genetics , Genetics, Population , Emigration and Immigration , Ethnicity/history , Female , Geography , Haplotypes , History, Ancient , Humans , India , Iran , Pakistan , Phylogeny
6.
J Invest Dermatol ; 137(3): 670-677, 2017 03.
Article in English | MEDLINE | ID: mdl-27866970

ABSTRACT

Our understanding of the genetics of skin pigmentation has been largely skewed towards populations of European ancestry, imparting less attention to South Asian populations, who behold huge pigmentation diversity. Here, we investigate skin pigmentation variation in a cohort of 1,167 individuals in the Middle Gangetic Plain of the Indian subcontinent. Our data confirm the association of rs1426654 with skin pigmentation among South Asians, consistent with previous studies, and also show association for rs2470102 single nucleotide polymorphism. Our haplotype analyses further help us delineate the haplotype distribution across social categories and skin color. Taken together, our findings suggest that the social structure defined by the caste system in India has a profound influence on the skin pigmentation patterns of the subcontinent. In particular, social category and associated single nucleotide polymorphisms explain about 32% and 6.4%, respectively, of the total phenotypic variance. Phylogeography of the associated single nucleotide polymorphisms studied across 52 diverse populations of the Indian subcontinent shows wide presence of the derived alleles, although their frequencies vary across populations. Our results show that both polymorphisms (rs1426654 and rs2470102) play an important role in the skin pigmentation diversity of South Asians.


Subject(s)
Polymorphism, Single Nucleotide , Skin Pigmentation/genetics , Adolescent , Adult , Aged , Antiporters/genetics , Asian People/genetics , Child , Cohort Studies , Female , Gene Frequency , Genetic Association Studies , Geography , Haplotypes , Humans , India , Male , Middle Aged , Phenotype , Phylogeography , Sequence Analysis, DNA , Social Class , Young Adult
9.
Sci Rep ; 6: 19157, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26754573

ABSTRACT

The global distribution of J2-M172 sub-haplogroups has been associated with Neolithic demic diffusion. Two branches of J2-M172, J2a-M410 and J2b-M102 make a considerable part of Y chromosome gene pool of the Indian subcontinent. We investigated the Neolithic contribution of demic dispersal from West to Indian paternal lineages, which majorly consists of haplogroups of Late Pleistocene ancestry. To accomplish this, we have analysed 3023 Y-chromosomes from different ethnic populations, of which 355 belonged to J2-M172. Comparison of our data with worldwide data, including Y-STRs of 1157 individuals and haplogroup frequencies of 6966 individuals, suggested a complex scenario that cannot be explained by a single wave of agricultural expansion from Near East to South Asia. Contrary to the widely accepted elite dominance model, we found a substantial presence of J2a-M410 and J2b-M102 haplogroups in both caste and tribal populations of India. Unlike demic spread in Eurasia, our results advocate a unique, complex and ancient arrival of J2a-M410 and J2b-M102 haplogroups into Indian subcontinent.


Subject(s)
Chromosomes, Human, Y , Genetics, Population , Haplotypes , Chromosomes, Human , Geography , Humans , India , Phylogeny , Phylogeography
10.
Sci Rep ; 6: 19166, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26759184

ABSTRACT

Due to the lack of written records or inscription, the origin and affiliation of Indian Jewish populations with other world populations remain contentious. Previous genetic studies have found evidence for a minor shared ancestry of Indian Jewish with Middle Eastern (Jewish) populations. However, these studies (relied on limited individuals), haven't explored the detailed temporal and spatial admixture process of Indian Jewish populations with the local Indian populations. Here, using large sample size with combination of high resolution biparental (autosomal) and uniparental markers (Y chromosome and mitochondrial DNA), we reconstructed genetic history of Indian Jewish by investigating the patterns of genetic diversity. Consistent with the previous observations, we detected minor Middle Eastern specific ancestry component among Indian Jewish communities, but virtually negligible in their local neighbouring Indian populations. The temporal test of admixture suggested that the first admixture of migrant Jewish populations from Middle East to South India (Cochin) occurred during fifth century. Overall, we concluded that the Jewish migration and admixture in India left a record in their genomes, which can link them to the 'Jewish Diaspora'.


Subject(s)
Ethnicity/genetics , Genetics, Population , Jews/genetics , Chromosomes, Human, Y , DNA, Mitochondrial/genetics , Genetic Markers , Genotype , Humans , India , Polymorphism, Single Nucleotide , Principal Component Analysis
11.
J Hum Genet ; 61(2): 167-72, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26511066

ABSTRACT

Although, there have been rigorous research on the Indian caste system by several disciplines, it is still one of the most controversial socioscientific topic. Previous genetic studies on the subcontinent have supported a classical hierarchal sharing of genetic component by various castes of India. In the present study, we have used high-resolution mtDNA and Y chromosomal markers to characterize the genetic structuring of the Uttarakhand populations in the context of neighboring regions. Furthermore, we have tested whether the genetic structuring of caste populations at different social levels of this region, follow the classical chaturvarna system. Interestingly, we found that this region showed a high level of variation for East Eurasian ancestry in both maternal and paternal lines of descent. Moreover, the intrapopulation comparison showed a high level of heterogeneity, likely because of different caste hierarchy, interpolated on asymmetric admixture of populations inhabiting on both sides of the Himalayas.


Subject(s)
Haplotypes , Paternal Inheritance , Chromosomes, Human, Y , DNA, Mitochondrial/chemistry , Female , Genetic Markers , Genetic Variation , Genetics, Population , Humans , India/ethnology , Male , Maternal Inheritance , Social Class
12.
Parasitol Int ; 64(6): 591-6, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26297290

ABSTRACT

Visceral Leishmaniasis (VL), caused by Leishmania donovani is endemic in the Indian sub-continent. Mannose-binding Lectin (MBL) is a complement lectin protein that binds to the surface of Leishmania promastigotes and results in activation of the complement lectin cascade. We utilized samples of 218 VL patients and 215 healthy controls from an Indian population. MBL2 functional variants were genotyped and the circulating MBL serum levels were measured. MBL serum levels were elevated in patients compared to the healthy controls (adjusted P=0.007). The MBL2 promoter variants -78C/T and +4P/Q were significantly associated with relative protection to VL (-78C/T, OR=0.7, 95% CI=0.5-0.96, adjusted P=0.026 and +4P/Q, OR=0.66, 95% CI=0.48-0.9, adjusted P=0.012). MBL2*LYQA haplotypes occurred frequently among controls (OR=0.69, 95% CI=0.5-0.97, adjusted P=0.034). MBL recognizes Leishmania and plays a relative role in establishing L. donovani infection and subsequent disease progression. In conclusion, MBL2 functional variants were associated with VL.


Subject(s)
Complement System Proteins/immunology , Leishmania donovani/immunology , Leishmaniasis, Visceral/immunology , Mannose-Binding Lectin/blood , Mannose-Binding Lectin/genetics , Case-Control Studies , Cross-Sectional Studies , Female , Gene Frequency/genetics , Genotype , Humans , India , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/pathology , Male , Mannose-Binding Lectin/metabolism , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics
13.
Chromosoma ; 124(2): 249-62, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25428210

ABSTRACT

In mammals, X-inactivation process is achieved by the cis-spreading of long noncoding Xist RNA over one of the female X chromosomes. The Xist binding accumulates histones H3 methylation and H4 hypoacetylation required for X inactivation that leads to proper dosage compensation of the X-linked genes. Co-transcription of Tsix, an antisense copy of Xist, blocks the Xist coating on the Xi. In mice ES cells, an RNase III enzyme Dicer1 disrupts Xist binding and methylated H3K27me3 accumulation on the Xi. Later, multiple reports opposed these findings raising a question regarding the possible role of Dicer1 in murine X silencing. Here, we show that reduction of DICER1 in human female cells increases XIST transcripts without compromising the binding of the XIST and histone tail modifications on the Xi. Moreover, DICER1-depleted cells show differential upregulation of many human X-linked genes by binding different amounts of acetylated histone predominantly on their active promoter sites. Therefore, X-linked gene silencing, which is thought to be coupled with the accumulation of XIST and heterochromatin markers on Xi can be disrupted in DICER1 depleted human cells. These results suggest that DICER1 has no apparent effect on the recruitment of heterochromatic markers on the Xi but is required for inactivation of differentially regulated genes for the maintenance of proper dosage compensation in differentiated cells.


Subject(s)
DEAD-box RNA Helicases/genetics , Gene Silencing , Genes, X-Linked , RNA, Long Noncoding/genetics , Ribonuclease III/genetics , X Chromosome Inactivation , Animals , Cell Differentiation , Chromatin/genetics , Chromatin/metabolism , Chromosomes, Human, X , DEAD-box RNA Helicases/metabolism , DNA Damage , Embryonic Stem Cells/metabolism , Female , HEK293 Cells , HeLa Cells , Histones/genetics , Histones/metabolism , Humans , Jurkat Cells , Male , Mice , Promoter Regions, Genetic , Protein Binding , RNA, Long Noncoding/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Ribonuclease III/metabolism , Transcription, Genetic , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
14.
Hum Immunol ; 75(12): 1177-81, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25454624

ABSTRACT

Visceral Leishmaniasis (VL) is the most severest form of Leishmaniasis and resistance to infection is mediated by cellular immune responses. Interleukin 4 (IL-4) orchestrates of Th2 and Th1 immune responses during infections. In this study, we aimed to investigate possible association between three functional IL-4 polymorphisms -590C/T (rs2243250), -34C/T (rs2070874) and 70bp VNTR (rs79071878 in intron3) with VL in an Indian cohort comprising of 197 VL patients and 193 healthy controls. The three investigated IL-4 polymorphisms were in strong linkage disequilibrium. The investigated IL-4 alleles, genotypes and the reconstructed haplotypes were not significantly distributed between the VL patients and healthy controls. Our study signifies no possible association of functional IL-4 polymorphisms with Indian VL and postulate other vital genes involved in the IL-4 pathway may provide genetic clues to elucidate of IL-4 regulation and immune-pathogenesis during VL.


Subject(s)
Immunity, Cellular/genetics , Interleukin-4/genetics , Leishmaniasis, Visceral/immunology , Minisatellite Repeats/genetics , Promoter Regions, Genetic/genetics , Adult , Case-Control Studies , Female , Gene Frequency , Genetic Association Studies , Humans , India , Leishmania/immunology , Leishmania/pathogenicity , Leishmaniasis, Visceral/genetics , Linkage Disequilibrium/genetics , Male , Polymorphism, Single Nucleotide
16.
Eur J Hum Genet ; 22(12): 1404-12, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24667789

ABSTRACT

The northern region of the Indian subcontinent is a vast landscape interlaced by diverse ecologies, for example, the Gangetic Plain and the Himalayas. A great number of ethnic groups are found there, displaying a multitude of languages and cultures. The Tharu is one of the largest and most linguistically diverse of such groups, scattered across the Tarai region of Nepal and bordering Indian states. Their origins are uncertain. Hypotheses have been advanced postulating shared ancestry with Austroasiatic, or Tibeto-Burman-speaking populations as well as aboriginal roots in the Tarai. Several Tharu groups speak a variety of Indo-Aryan languages, but have traditionally been described by ethnographers as representing East Asian phenotype. Their ancestry and intra-population diversity has previously been tested only for haploid (mitochondrial DNA and Y-chromosome) markers in a small portion of the population. This study presents the first systematic genetic survey of the Tharu from both Nepal and two Indian states of Uttarakhand and Uttar Pradesh, using genome-wide SNPs and haploid markers. We show that the Tharu have dual genetic ancestry as up to one-half of their gene pool is of East Asian origin. Within the South Asian proportion of the Tharu genetic ancestry, we see vestiges of their common origin in the north of the South Asian Subcontinent manifested by mitochondrial DNA haplogroup M43.


Subject(s)
Asian People/genetics , Ethnicity/genetics , Chromosomes, Human, Y/genetics , DNA, Mitochondrial/genetics , Genetic Association Studies , Genetic Variation , Genotyping Techniques , Haplotypes , Humans , India , Nepal , Phylogeography , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
17.
Mitochondrion ; 14(1): 1-6, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24355295

ABSTRACT

History has well documented the execution of Queen Ketevan of Georgia by the Persian Emperor of modern day Iran. Based on historical records, in 1624 two Augustinian friars unearthed the queen's remains and one of them brought the relic to the St. Augustine convent in Goa, India. We carried out ancient DNA analysis on the human bone remains excavated from the St. Augustine convent by sequencing and genotyping of the mitochondrial DNA. The investigations of the remains revealed a unique mtDNA haplogroup U1b, which is absent in India, but present in Georgia and surrounding regions. Since our genetic analysis corroborates archaeological and literary evidence, it is likely that the excavated bone belongs to Queen Ketevan of Georgia.


Subject(s)
Bone and Bones/chemistry , DNA, Mitochondrial/genetics , DNA, Mitochondrial/isolation & purification , Forensic Anthropology , Fossils , Female , Genotyping Techniques , Haplotypes , Humans , India , Sequence Analysis, DNA
18.
Infect Immun ; 82(1): 52-61, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24126531

ABSTRACT

Human mannose-binding lectin (MBL) encoded by the MBL2 gene is a pattern recognition protein and has been associated with many infectious diseases, including malaria. We sought to investigate the contribution of functional MBL2 gene variations to Plasmodium falciparum malaria in well-defined cases and in matched controls. We resequenced the 8.7 kb of the entire MBL2 gene in 434 individuals clinically classified with malaria from regions of India where malaria is endemic. The study cohort included 176 patients with severe malaria, 101 patients with mild malaria, and 157 ethnically matched asymptomatic individuals. In addition, 830 individuals from 32 socially, linguistically, and geographically diverse endogamous populations of India were investigated for the distribution of functional MBL2 variants. The MBL2 -221C (X) allelic variant is associated with increased risk of malaria (mild malaria odds ratio [OR] = 1.9, corrected P value [P(Corr)] = 0.0036; severe malaria OR = 1.6, P(Corr) = 0.02). The exon1 variants MBL2*B (severe malaria OR = 2.1, P(Corr) = 0.036; mild versus severe malaria OR = 2.5, P(Corr) = 0.039) and MBL2*C (mild versus severe malaria OR = 5.4, P(Corr) = 0.045) increased the odds of having malaria. The exon1 MBL2*D/*B/*C variant increased the risk for severe malaria (OR = 3.4, P(Corr) = 0.000045). The frequencies of low MBL haplotypes were significantly higher in severe malaria (14.2%) compared to mild malaria (7.9%) and asymptomatic (3.8%). The MBL2*LYPA haplotypes confer protection, whereas MBL2*LXPA increases the malaria risk. Our findings in Indian populations demonstrate that MBL2 functional variants are strongly associated with malaria and infection severity.


Subject(s)
Asian People/genetics , Genetic Predisposition to Disease , Malaria, Falciparum/genetics , Mannose-Binding Lectin/genetics , Polymorphism, Single Nucleotide , Adolescent , Adult , Alleles , Case-Control Studies , Child , Cohort Studies , Female , Gene Frequency , Genotype , Humans , India , Male , Middle Aged , Odds Ratio , Plasmodium falciparum , Young Adult
19.
PLoS Genet ; 9(11): e1003912, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24244186

ABSTRACT

Skin pigmentation is one of the most variable phenotypic traits in humans. A non-synonymous substitution (rs1426654) in the third exon of SLC24A5 accounts for lighter skin in Europeans but not in East Asians. A previous genome-wide association study carried out in a heterogeneous sample of UK immigrants of South Asian descent suggested that this gene also contributes significantly to skin pigmentation variation among South Asians. In the present study, we have quantitatively assessed skin pigmentation for a largely homogeneous cohort of 1228 individuals from the Southern region of the Indian subcontinent. Our data confirm significant association of rs1426654 SNP with skin pigmentation, explaining about 27% of total phenotypic variation in the cohort studied. Our extensive survey of the polymorphism in 1573 individuals from 54 ethnic populations across the Indian subcontinent reveals wide presence of the derived-A allele, although the frequencies vary substantially among populations. We also show that the geospatial pattern of this allele is complex, but most importantly, reflects strong influence of language, geography and demographic history of the populations. Sequencing 11.74 kb of SLC24A5 in 95 individuals worldwide reveals that the rs1426654-A alleles in South Asian and West Eurasian populations are monophyletic and occur on the background of a common haplotype that is characterized by low genetic diversity. We date the coalescence of the light skin associated allele at 22-28 KYA. Both our sequence and genome-wide genotype data confirm that this gene has been a target for positive selection among Europeans. However, the latter also shows additional evidence of selection in populations of the Middle East, Central Asia, Pakistan and North India but not in South India.


Subject(s)
Antiporters/genetics , Asian People/genetics , Skin Pigmentation/genetics , White People/genetics , Alleles , Genetic Variation , Genome-Wide Association Study , Haplotypes , Humans , Polymorphism, Single Nucleotide
20.
PLoS One ; 8(10): e75064, 2013.
Article in English | MEDLINE | ID: mdl-24130682

ABSTRACT

Human settlement and migrations along sides of Bay-of-Bengal have played a vital role in shaping the genetic landscape of Bangladesh, Eastern India and Southeast Asia. Bangladesh and Northeast India form the vital land bridge between the South and Southeast Asia. To reconstruct the population history of this region and to see whether this diverse region geographically acted as a corridor or barrier for human interaction between South Asia and Southeast Asia, we, for the first time analyzed high resolution uniparental (mtDNA and Y chromosome) and biparental autosomal genetic markers among aboriginal Bangladesh tribes currently speaking Tibeto-Burman language. All the three studied populations; Chakma, Marma and Tripura from Bangladesh showed strikingly high homogeneity among themselves and strong affinities to Northeast Indian Tibeto-Burman groups. However, they show substantially higher molecular diversity than Northeast Indian populations. Unlike Austroasiatic (Munda) speakers of India, we observed equal role of both males and females in shaping the Tibeto-Burman expansion in Southern Asia. Moreover, it is noteworthy that in admixture proportion, TB populations of Bangladesh carry substantially higher mainland Indian ancestry component than Northeast Indian Tibeto-Burmans. Largely similar expansion ages of two major paternal haplogroups (O2a and O3a3c), suggested that they arose before the differentiation of any language group and approximately at the same time. Contrary to the scenario proposed for colonization of Northeast India as male founder effect that occurred within the past 4,000 years, we suggest a significantly deep colonization of this region. Overall, our extensive analysis revealed that the population history of South Asian Tibeto-Burman speakers is more complex than it was suggested before.


Subject(s)
Genetics, Population/methods , Bangladesh , DNA, Mitochondrial/genetics , Gene Flow/genetics , Geography , Haplotypes/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL