Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Br J Cancer ; 127(11): 2060-2071, 2022 11.
Article in English | MEDLINE | ID: mdl-36138076

ABSTRACT

BACKGROUND: p53 mutants contribute to the chronic inflammatory tumour microenvironment (TME). In this study, we address the mechanism of how p53 mutants lead to chronic inflammation in tumours and how to transform it to restore cancer immune surveillance. METHODS: Our analysis of RNA-seq data from The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) project revealed that mutant p53 (mtp53) cancers correlated with chronic inflammation. We used cell-based assays and a mouse model to discover a novel gain of function of mtp53 and the effect of the mtp53 reactivating compound APR-246 on the anti-tumour immune response. RESULTS: We found that tumour samples from patients with breast carcinoma carrying mtp53 showed elevated Interferon (IFN) signalling, Tumour Inflammation Signature (TIS) score and infiltration of CD8+ T cells compared to wild type p53 (wtp53) tumours. We showed that the expression of IFN and immune checkpoints were elevated in tumour cells in a mtp53-dependent manner, suggesting a novel gain of function. Restoration of wt function to mtp53 by APR-246 induced the expression of endogenous retroviruses, IFN signalling and repressed immune checkpoints. Moreover, APR-246 promoted CD4+ T cells infiltration and IFN signalling and prevented CD8+ T cells exhaustion within the TME in vivo. CONCLUSIONS: Breast carcinomas with mtp53 displayed enhanced inflammation. APR-246 boosted the interferon response or represses immune checkpoints in p53 mutant tumour cells, and restores cancer immune surveillance in vivo.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Mice , Animals , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Gain of Function Mutation , Neoplasms/genetics , Interferons/genetics , Interferons/metabolism , Inflammation/genetics , Tumor Microenvironment/genetics
2.
Mol Cancer Ther ; 21(10): 1524-1534, 2022 10 07.
Article in English | MEDLINE | ID: mdl-35877475

ABSTRACT

Reactivation of p53 tumor-suppressor function by small molecules is an attractive strategy to defeat cancer. A potent p53-reactivating molecule RITA, which triggers p53-dependent apoptosis in human tumor cells in vitro and in vivo, exhibits p53-independent cytotoxicity due to modifications by detoxification enzyme Sulfotransferase 1A1 (SULT1A1), producing a reactive carbocation. Several synthetic modifications to RITA's heterocyclic scaffold lead to higher energy barriers for carbocation formation. In this study, we addressed the question whether RITA analogs NSC777196 and NSC782846 can induce p53-dependent apoptosis without SULT1A1-dependent DNA damage. We found that RITA analog NSC782846, but not NSC777196, induced p53-regulated genes, targeted oncogene addiction, and killed cancer cells upon p53 reactivation, but without induction of DNA damage and inhibition RNA pol II. Our results might demonstrate a method for designing more specific and potent RITA analogs to accelerate translation of p53-targeting compounds from laboratory bench to clinic.


Subject(s)
RNA Polymerase II , Tumor Suppressor Protein p53 , Apoptosis , Cell Line, Tumor , DNA Damage , Furans/pharmacology , Humans , Sulfotransferases/genetics , Tumor Suppressor Protein p53/genetics
3.
Cancer Discov ; 11(12): 3090-3105, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34230007

ABSTRACT

The repression of repetitive elements is an important facet of p53's function as a guardian of the genome. Paradoxically, we found that p53 activated by MDM2 inhibitors induced the expression of endogenous retroviruses (ERV) via increased occupancy on ERV promoters and inhibition of two major ERV repressors, histone demethylase LSD1 and DNA methyltransferase DNMT1. Double-stranded RNA stress caused by ERVs triggered type I/III interferon expression and antigen processing and presentation. Pharmacologic activation of p53 in vivo unleashed the IFN program, promoted T-cell infiltration, and significantly enhanced the efficacy of checkpoint therapy in an allograft tumor model. Furthermore, the MDM2 inhibitor ALRN-6924 induced a viral mimicry pathway and tumor inflammation signature genes in patients with melanoma. Our results identify ERV expression as the central mechanism whereby p53 induction overcomes tumor immune evasion and transforms tumor microenvironment to a favorable phenotype, providing a rationale for the synergy of MDM2 inhibitors and immunotherapy. SIGNIFICANCE: We found that p53 activated by MDM2 inhibitors induced the expression of ERVs, in part via epigenetic factors LSD1 and DNMT1. Induction of IFN response caused by ERV derepression upon p53-targeting therapies provides a possibility to overcome resistance to immune checkpoint blockade and potentially transform "cold" tumors into "hot." This article is highlighted in the In This Issue feature, p. 2945.


Subject(s)
Interferon Type I , Melanoma , Humans , Immunotherapy , Melanoma/drug therapy , Melanoma/genetics , Tumor Escape , Tumor Microenvironment , Tumor Suppressor Protein p53/genetics
4.
iScience ; 23(12): 101785, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33294793

ABSTRACT

Heterologous expression of a biosynthesis gene cluster from Amycolatopsis sp. resulted in the discovery of two unique class IV lasso peptides, felipeptins A1 and A2. A mixture of felipeptins stimulated proliferation of cancer cells, while having no such effect on the normal cells. Detailed investigation revealed, that pre-treatment of cancer cells with a mixture of felipeptins resulted in downregulation of the tumor suppressor Rb, making the cancer cells to proliferate faster. Pre-treatment with felipeptins made cancer cells considerably more sensitive to the anticancer agent doxorubicin and re-sensitized doxorubicin-resistant cells to this drug. Structural characterization and binding experiments showed an interaction between felipeptins resulting in complex formation, which explains their synergistic effect. This discovery may open an alternative avenue in cancer treatment, helping to eliminate quiescent cells that often lead to cancer relapse.

5.
Breast Cancer Res ; 22(1): 80, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32727562

ABSTRACT

BACKGROUND: The estrogen receptor (ER)-positive breast cancer represents over 80% of all breast cancer cases. Even though adjuvant hormone therapy with tamoxifen (TMX) is saving lives of patients with ER-positive breast cancer, the acquired resistance to TMX anti-estrogen therapy is the main hurdle for successful TMX therapy. Here we address the mechanism for TMX resistance and explore the ways to eradicate TMX-resistant breast cancer in both in vitro and ex vivo experiments. EXPERIMENTAL DESIGN: To identify compounds able to overcome TMX resistance, we used short-term and long-term viability assays in cancer cells in vitro and in patient samples in 3D ex vivo, analysis of gene expression profiles and cell line pharmacology database, shRNA screen, CRISPR-Cas9 genome editing, real-time PCR, immunofluorescent analysis, western blot, measurement of oxidative stress using flow cytometry, and thioredoxin reductase 1 enzymatic activity. RESULTS: Here, for the first time, we provide an ample evidence that a high level of the detoxifying enzyme SULT1A1 confers resistance to TMX therapy in both in vitro and ex vivo models and correlates with TMX resistance in metastatic samples in relapsed patients. Based on the data from different approaches, we identified three anticancer compounds, RITA (Reactivation of p53 and Induction of Tumor cell Apoptosis), aminoflavone (AF), and oncrasin-1 (ONC-1), whose tumor cell inhibition activity is dependent on SULT1A1. We discovered thioredoxin reductase 1 (TrxR1, encoded by TXNRD1) as a target of bio-activated RITA, AF, and ONC-1. SULT1A1 depletion prevented the inhibition of TrxR1, induction of oxidative stress, DNA damage signaling, and apoptosis triggered by the compounds. Notably, RITA efficiently suppressed TMX-unresponsive patient-derived breast cancer cells ex vivo. CONCLUSION: We have identified a mechanism of resistance to TMX via hyperactivated SULT1A1, which renders selective vulnerability to anticancer compounds RITA, AF, and ONC-1, and provide a rationale for a new combination therapy to overcome TMX resistance in breast cancer patients. Our novel findings may provide a strategy to circumvent TMX resistance and suggest that this approach could be developed further for the benefit of relapsed breast cancer patients.


Subject(s)
Breast Neoplasms/drug therapy , Small Molecule Libraries/pharmacology , Tamoxifen/pharmacology , Antineoplastic Agents, Hormonal/chemistry , Antineoplastic Agents, Hormonal/pharmacology , Apoptosis , Arylsulfotransferase/genetics , Arylsulfotransferase/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , Female , Humans , Tamoxifen/chemistry , Tumor Cells, Cultured
6.
EMBO Mol Med ; 12(4): e11177, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32115889

ABSTRACT

Metastatic cancers commonly activate adaptive chemotherapy resistance, attributed to both microenvironment-dependent phenotypic plasticity and genetic characteristics of cancer cells. However, the contribution of chemotherapy itself to the non-genetic resistance mechanisms was long neglected. Using high-grade serous ovarian cancer (HGSC) patient material and cell lines, we describe here an unexpectedly robust cisplatin and carboplatin chemotherapy-induced ERK1/2-RSK1/2-EphA2-GPRC5A signaling switch associated with cancer cell intrinsic and acquired chemoresistance. Mechanistically, pharmacological inhibition or knockdown of RSK1/2 prevented oncogenic EphA2-S897 phosphorylation and EphA2-GPRC5A co-regulation, thereby facilitating a signaling shift to the canonical tumor-suppressive tyrosine phosphorylation and consequent downregulation of EphA2. In combination with platinum, RSK inhibitors effectively sensitized even the most platinum-resistant EphA2high , GPRC5Ahigh cells to the therapy-induced apoptosis. In HGSC patient tumors, this orphan receptor GPRC5A was expressed exclusively in cancer cells and associated with chemotherapy resistance and poor survival. Our results reveal a kinase signaling pathway uniquely activated by platinum to elicit adaptive resistance. They further identify GPRC5A as a marker for abysmal HGSC outcome and putative vulnerability of the chemo-resistant cells to RSK1/2-EphA2-pS897 pathway inhibition.


Subject(s)
Drug Resistance, Neoplasm , Ovarian Neoplasms , Receptor, EphA2 , Receptors, G-Protein-Coupled/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Signal Transduction , Animals , Cell Line, Tumor , Female , Gene Knockdown Techniques , Humans , Neoplasm Transplantation , Ovarian Neoplasms/drug therapy , Phosphorylation , Receptor, EphA2/metabolism , Tumor Microenvironment
7.
J Clin Med ; 9(2)2020 Feb 22.
Article in English | MEDLINE | ID: mdl-32098416

ABSTRACT

The TP53 gene is a key tumor suppressor. Although the tumor suppressor p53 was one of the first to be characterized as a transcription factor, with its main function potentiated by its interaction with DNA, there are still many unresolved questions about its mechanism of action. Here, we demonstrate a novel role for p53 in the maintenance of nuclear architecture of cells. Using three-dimensional (3D) imaging and spectral karyotyping, as well as super resolution microscopy of DNA structure, we observe significant differences in 3D telomere signatures, DNA structure and DNA-poor spaces as well gains or losses of chromosomes, between normal and tumor cells with CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-deleted or wild-type TP53. Additionally, treatment with Nutlin-3 results in differences in nuclear architecture of telomeres in wild-type but not in p53 knockout MCF-7 (Michigan Cancer Foundation-7) cells. Nutlin-3 binds to the p53-binding pocket of mouse double minute 2 (MDM2) and blocks the p53-MDM2 interaction. Moreover, we demonstrate that another p53 stabilizing small molecule, RITA (reactivation of p53 and induction of tumor cell apoptosis), also induces changes in 3D DNA structure, apparently in a p53 independent manner. These results implicate p53 activity in regulating nuclear organization and, additionally, highlight the divergent effects of the p53 targeting compounds Nutlin-3 and RITA.

8.
Cancer Res ; 80(7): 1538-1550, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32019870

ABSTRACT

Identification of the molecular mechanism of action (MoA) of bioactive compounds is a crucial step for drug development but remains a challenging task despite recent advances in technology. In this study, we applied multidimensional proteomics, sensitivity correlation analysis, and transcriptomics to identify a common MoA for the anticancer compounds RITA, aminoflavone (AF), and oncrasin-1 (Onc-1). Global thermal proteome profiling revealed that the three compounds target mRNA processing and transcription, thereby attacking a cancer vulnerability, transcriptional addiction. This led to the preferential loss of expression of oncogenes involved in PDGF, EGFR, VEGF, insulin/IGF/MAPKK, FGF, Hedgehog, TGFß, and PI3K signaling pathways. Increased reactive oxygen species level in cancer cells was a prerequisite for targeting the mRNA transcription machinery, thus conferring cancer selectivity to these compounds. Furthermore, DNA repair factors involved in homologous recombination were among the most prominently repressed proteins. In cancer patient samples, RITA, AF, and Onc-1 sensitized to poly(ADP-ribose) polymerase inhibitors both in vitro and ex vivo These findings might pave a way for new synthetic lethal combination therapies.Significance: These findings highlight agents that target transcriptional addiction in cancer cells and suggest combination treatments that target RNA processing and DNA repair pathways simultaneously as effective cancer therapies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Oncogenes/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Transcription, Genetic/drug effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , Female , Flavonoids/pharmacology , Flavonoids/therapeutic use , Furans/pharmacology , Furans/therapeutic use , Gene Expression Profiling , Humans , Indoles/pharmacology , Indoles/therapeutic use , Oxidative Stress/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Proteome/genetics , Proteomics/methods , Recombinational DNA Repair/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics , Synthetic Lethal Mutations/drug effects
9.
Sci Rep ; 10(1): 1049, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31974452

ABSTRACT

Pifithrin-α (PFT-α) is a small molecule which has been widely used as a specific inhibitor of p53 transcription activity. However, its molecular mechanism of action remains unclear. PFT-α has also been described to display potent p53-independent activity in cells. In this study, we addressed the mechanism of action of PFT-α. We found that PFT-α failed to prevent the effects of Mdm2 inhibitor Nutlin-3 on cell cycle and apoptosis in several cancer cell lines. However, PFT-α rescued normal primary fibroblasts from growth inhibition by Nutlin-3. PFT-α displayed a very limited effect on p53-dependent transcription upon its activation by Nutlin-3. Moreover, PFT-α inhibitory effect on transcription was highly dependent on the nature of the p53 target gene. PFT-α attenuated post-translational modifications of p53 without affecting total p53 protein level. Finally, we found that PFT-α can decrease the level of intracellular reactive oxygen species through activation of an aryl hydrocarbon receptor (AHR)-Nrf2 axis in a p53-independent manner. In conclusion, PFT-α inhibits only some aspects of p53 function, therefore it should be used with extreme caution to study p53-dependent processes.


Subject(s)
Benzothiazoles/pharmacology , Imidazoles/metabolism , Piperazines/metabolism , Protein Processing, Post-Translational/drug effects , Toluene/analogs & derivatives , Transcription, Genetic/drug effects , Tumor Suppressor Protein p53/antagonists & inhibitors , Apoptosis/drug effects , Basic Helix-Loop-Helix Transcription Factors/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , HCT116 Cells , Humans , MCF-7 Cells , NF-E2-Related Factor 2/drug effects , Protein Processing, Post-Translational/genetics , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , RNA Interference , RNA, Small Interfering/genetics , Reactive Oxygen Species/metabolism , Receptors, Aryl Hydrocarbon/drug effects , Toluene/pharmacology , Transcription, Genetic/genetics , Tumor Suppressor Protein p53/metabolism
10.
J Mol Cell Biol ; 11(7): 586-599, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31310659

ABSTRACT

p53 is the major tumor suppressor and the most frequently inactivated gene in cancer. p53 could be disabled either by mutations or by upstream negative regulators, including, but not limited to MDM2 and MDMX. p53 activity is required for the prevention as well as for the eradication of cancers. Restoration of p53 activity in mouse models leads to the suppression of established tumors of different origin. These findings provide a strong support to the anti-cancer strategy aimed for p53 reactivation. In this review, we summarize recent progress in the development of small molecules, which restore the tumor suppressor function of wild-type p53 and discuss their clinical advance. We discuss different aspects of p53-mediated response, which contribute to suppression of tumors, including non-canonical p53 activities, such as regulation of immune response. While targeting p53 inhibitors is a very promising approach, there are certain limitations and concerns that the intensive research and clinical evaluation of compounds will hopefully help to overcome.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms , Tumor Suppressor Protein p53 , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Humans , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
11.
Cell Cycle ; 17(24): 2697-2715, 2018.
Article in English | MEDLINE | ID: mdl-30526305

ABSTRACT

The MYC and RAS oncogenes are sufficient for transformation of normal rodent cells. This cooperativity is at least in part based on suppression of RAS-induced cellular senescence by MYC and block of MYC-induced apoptosis by RAS - thereby canceling out two main barriers against tumor development. However, it remains unclear whether MYC and RAS cooperate in this way in human cells, where MYC and RAS are not sufficient for transformation. To address this question, we established a combined Tet-inducible H-RASV12 and hydroxytamoxifen-inducible MycER system in normal human BJ fibroblasts. We show here that activation of RAS alone induced senescence while activation of MYC alone or together with RAS triggered DNA damage, induction of p53 and massive apoptosis, suggesting that RAS cannot rescue MYC-induced apoptosis in this system. Although coexpression with MYC reduced certain RAS-induced senescence markers (histone H3 lysine 9 trimethylation and senescence-associated ß-GAL activity), the induction of the senescence marker p16INK4A was further enhanced and the culture ceased to proliferate within a few days, revealing that MYC could not fully suppress RAS-induced senescence. Furthermore, depletion of p53, which enhanced proliferation and rescued the cells from RAS-induced senescence, did not abrogate MYC-induced apoptosis. We conclude that MYC and RAS are unable to cooperate in overcoming senescence and apoptosis in normal human fibroblasts even after depletion of p53, indicating that additional oncogenic events are required to abrogate these fail-safe mechanisms and pave the way for cellular transformation. These findings have implications for our understanding of the transformation process in human cells. Abbreviations and acronyms: CDK: Cyclin-dependent kinase; DDR: DNA damage response; DOX: Doxycycline; EdU: 5-ethynyl-2'-deoxyuridine; FACS: Fluorescence Activated Cell Sorting; MycER: MYC-estrogen receptor; OHT: 4-hydroxytamoxifen; OIS: Oncogene-induced senescence; PP2A: Protein phosphatase 2A; ROS: Reactive oxygen species; SA-ß-GAL: Senescence-associated ß-galactosidase; SAHF: Senescence-associated heterochromatin foci; shRNA: Short hairpin RNA; YFP: Yellow fluorescent protein.


Subject(s)
Apoptosis , Cellular Senescence , Proto-Oncogene Proteins c-myc/metabolism , ras Proteins/metabolism , Apoptosis/drug effects , Cellular Senescence/drug effects , Cyclin-Dependent Kinase Inhibitor p16/metabolism , DNA Damage/drug effects , Doxorubicin/pharmacology , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , RNA Interference , RNA, Small Interfering/metabolism , Tamoxifen/pharmacology , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , ras Proteins/genetics
12.
Oncotarget ; 9(54): 30213-30224, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-30100984

ABSTRACT

The albumin D-box binding protein (DBP) is a member of the PAR bZip (proline and acidic amino acid-rich basic leucine zipper) transcription factor family and functions as important regulator of circadian core and output gene expression. Gene expression of DBP itself is under the control of E-box-dependent binding by the Bmal1-Clock heterodimer and CRE-dependent binding by the cAMP responsive element binding protein (CREB). However, the signaling mechanism mediating CREB-dependent regulation of DBP expression in the peripheral clock remains elusive. In this study, we examined the role of the GPCR (G-protein-coupled receptor)/Gαi3 (Galphai3) controlled cAMP-CREB signaling pathway in the regulation of hepatic expression of core clock and clock-regulated genes, including Dbp. Analysis of circadian gene expression revealed that rhythmicity of hepatic transcript levels of the majority of core clock (including Per1) and clock-regulated genes were not affected by Gαi3 deficiency. Consistently, the period length of primary Gαi3 deficient tail fibroblasts expressing a Bmal1-Luciferase reporter was not affected. Interestingly, however, Gαi3 deficient female but not male mice showed a tendentiously increased activation of CREB (nuclear pSer133-CREB) accompanied by an advanced peak in Dbp gene expression and elevated mRNA levels of the cytochrome P450 family member Cyp3a11, a target gene of DBP. Accordingly, selective inhibition of CREB led to a strongly decreased expression of DBP and CYP3A4 (human Cyp3a11 homologue) in HepG2 liver cells. In summary, our data suggest that the Gαi3-pCREB signalling pathway functions as a regulator of sexual-dimorphic expression of DBP and its xenobiotic target enzymes Cyp3a11/CYP3A4.

13.
Aging (Albany NY) ; 8(3): 484-505, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26959556

ABSTRACT

Mammalian sirtuins are involved in the control of metabolism and life-span regulation. Here, we link the mitochondrial sirtuin SIRT4 with cellular senescence, skin aging, and mitochondrial dysfunction. SIRT4 expression significantly increased in human dermal fibroblasts undergoing replicative or stress-induced senescence triggered by UVB or gamma-irradiation. In-vivo, SIRT4 mRNA levels were upregulated in photoaged vs. non-photoaged human skin. Interestingly, in all models of cellular senescence and in photoaged skin, upregulation of SIRT4 expression was associated with decreased levels of miR-15b. The latter was causally linked to increased SIRT4 expression because miR-15b targets a functional binding site in the SIRT4 gene and transfection of oligonucleotides mimicking miR-15b function prevented SIRT4 upregulation in senescent cells. Importantly, increased SIRT4 negatively impacted on mitochondrial functions and contributed to the development of a senescent phenotype. Accordingly, we observed that inhibition of miR-15b, in a SIRT4-dependent manner, increased generation of mitochondrial reactive oxygen species, decreased mitochondrial membrane potential, and modulated mRNA levels of nuclear encoded mitochondrial genes and components of the senescence-associated secretory phenotype (SASP). Thus, miR-15b is a negative regulator of stress-induced SIRT4 expression thereby counteracting senescence associated mitochondrial dysfunction and regulating the SASP and possibly organ aging, such as photoaging of human skin.


Subject(s)
Cellular Senescence , Fibroblasts/metabolism , MicroRNAs/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Sirtuins/metabolism , Skin Aging/physiology , Cells, Cultured , Fibroblasts/radiation effects , Gamma Rays , Humans , Male , Mitochondria/radiation effects , Reactive Oxygen Species/metabolism , Ultraviolet Rays
14.
Proc Natl Acad Sci U S A ; 112(20): 6491-6, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25944935

ABSTRACT

Platelets are crucial for hemostasis and thrombosis and exacerbate tissue injury following ischemia and reperfusion. Important regulators of platelet function are G proteins controlled by seven transmembrane receptors. The Gi protein Gα(i2) mediates platelet activation in vitro, but its in vivo role in hemostasis, arterial thrombosis, and postischemic infarct progression remains to be determined. Here we show that mice lacking Gα(i2) exhibit prolonged tail-bleeding times and markedly impaired thrombus formation and stability in different models of arterial thrombosis. We thus generated mice selectively lacking Gα(i2) in megakaryocytes and platelets (Gna(i2)(fl/fl)/PF4-Cre mice) and found bleeding defects comparable to those in global Gα(i2)-deficient mice. To examine the impact of platelet Gα(i2) in postischemic thrombo-inflammatory infarct progression, Gna(i2)(fl/fl)/PF4-Cre mice were subjected to experimental models of cerebral and myocardial ischemia/reperfusion injury. In the model of transient middle cerebral artery occlusion stroke Gna(i2)(fl/fl)/PF4-Cre mice developed significantly smaller brain infarcts and fewer neurological deficits than littermate controls. Following myocardial ischemia, Gna(i2)(fl/fl)/PF4-Cre mice showed dramatically reduced reperfusion injury which correlated with diminished formation of the ADP-dependent platelet neutrophil complex. In conclusion, our data provide definitive evidence that platelet Gα(i2) not only controls hemostatic and thrombotic responses but also is critical for the development of ischemia/reperfusion injury in vivo.


Subject(s)
GTP-Binding Protein alpha Subunit, Gi2/metabolism , Infarction, Middle Cerebral Artery/physiopathology , Inflammation/physiopathology , Platelet Activation/physiology , Reperfusion Injury/physiopathology , Thrombosis/physiopathology , Animals , Bleeding Time , Blood Platelets/metabolism , GTP-Binding Protein alpha Subunit, Gi2/deficiency , Immunoblotting , Megakaryocytes/metabolism , Mice , Reperfusion Injury/prevention & control
15.
J Biol Chem ; 289(1): 74-88, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24273164

ABSTRACT

The cancer-associated, centrosomal adaptor protein TACC3 (transforming acidic coiled-coil 3) and its direct effector, the microtubule polymerase chTOG (colonic and hepatic tumor overexpressed gene), play a crucial function in centrosome-driven mitotic spindle assembly. It is unclear how TACC3 interacts with chTOG. Here, we show that the C-terminal TACC domain of TACC3 and a C-terminal fragment adjacent to the TOG domains of chTOG mediate the interaction between these two proteins. Interestingly, the TACC domain consists of two functionally distinct subdomains, CC1 (amino acids (aa) 414-530) and CC2 (aa 530-630). Whereas CC1 is responsible for the interaction with chTOG, CC2 performs an intradomain interaction with the central repeat region of TACC3, thereby masking the TACC domain before effector binding. Contrary to previous findings, our data clearly demonstrate that Aurora-A kinase does not regulate TACC3-chTOG complex formation, indicating that Aurora-A solely functions as a recruitment factor for the TACC3-chTOG complex to centrosomes and proximal mitotic spindles. We identified with CC1 and CC2, two functionally diverse modules within the TACC domain of TACC3 that modulate and mediate, respectively, TACC3 interaction with chTOG required for spindle assembly and microtubule dynamics during mitotic cell division.


Subject(s)
Aurora Kinase A/metabolism , Carrier Proteins/metabolism , Centrosome/metabolism , Fetal Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Mitosis/physiology , Animals , Aurora Kinase A/genetics , Carrier Proteins/genetics , Fetal Proteins/genetics , HEK293 Cells , HeLa Cells , Humans , Mice , Microtubule-Associated Proteins/genetics , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Protein Binding/physiology , Protein Structure, Tertiary
16.
Biol Chem ; 394(11): 1411-23, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23787465

ABSTRACT

During the mitotic division cycle, cells pass through an extensive microtubule rearrangement process where microtubules forming the mitotic spindle apparatus are dynamically instable. Several centrosomal- and microtubule-associated proteins are involved in the regulation of microtubule dynamics and stability during mitosis. Here, we focus on members of the transforming acidic coiled coil (TACC) family of centrosomal adaptor proteins, in particular TACC3, in which their subcellular localization at the mitotic spindle apparatus is controlled by Aurora-A kinase-mediated phosphorylation. At the effector level, several TACC-binding partners have been identified and characterized in greater detail, in particular, the microtubule polymerase XMAP215/ch-TOG/CKAP5 and clathrin heavy chain (CHC). We summarize the recent progress in the molecular understanding of these TACC3 protein complexes, which are crucial for proper mitotic spindle assembly and dynamics to prevent faulty cell division and aneuploidy. In this regard, the (patho)biological role of TACC3 in development and cancer will be discussed.


Subject(s)
Adaptor Protein Complex 3/chemistry , Centrosome/chemistry , Microtubule-Associated Proteins/chemistry , Mitosis , Adaptor Protein Complex 3/genetics , Adaptor Protein Complex 3/physiology , Animals , Cell Division/genetics , Centrosome/pathology , Centrosome/physiology , Humans , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/physiology , Mitosis/genetics , Multigene Family/genetics , Protein Structure, Tertiary/genetics , Spindle Apparatus/genetics
18.
Cell Cycle ; 9(22): 4469-73, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-21088502

ABSTRACT

Altered cell division is associated with overproliferation and tumorigenesis, however, mitotic aberrations can also trigger antiproliferative responses leading to postmitotic cell cycle exit. Here, we focus on the role of the centrosome and in particular of centrosomal TACC (transforming acidic coiled coil) proteins in tumorigenesis and cellular senescence. We have complied recent evidence that inhibition or depletion of various mitotic proteins which take over key in centrosome and kinetochore integrity and mitotic checkpoint function in sufficient to activate a p53-p21(WAF) driven premature senescence phenotype. These findings have direct implications for proliferative tissue homeostasis as well as for cellular and organismal aging.


Subject(s)
Cellular Senescence , Centrosome/physiology , Neoplasms/etiology , Spindle Apparatus/physiology , Aurora Kinases , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Humans , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/physiology , Mitosis , Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/physiology , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...