Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38077097

ABSTRACT

Task-free brain activity affords unique insight into the functional structure of brain network dynamics and is a strong marker of individual differences. In this work, we present an algorithmic optimization framework that makes it possible to directly invert and parameterize brain-wide dynamical-systems models involving hundreds of interacting brain areas, from single-subject time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics ("precision brain models") and making quantitative predictions. We extensively validate the models' performance in forecasting future brain activity and predicting individual variability in key M/EEG markers. Lastly, we demonstrate the power of our technique in resolving individual differences in the generation of alpha and beta-frequency oscillations. We characterize subjects based upon model attractor topology and a dynamical-systems mechanism by which these topologies generate individual variation in the expression of alpha vs. beta rhythms. We trace these phenomena back to global variation in excitation-inhibition balance, highlighting the explanatory power of our framework in generating mechanistic insights.

2.
J Neurosci ; 43(7): 1074-1088, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36796842

ABSTRACT

In recent years, the field of neuroscience has gone through rapid experimental advances and a significant increase in the use of quantitative and computational methods. This growth has created a need for clearer analyses of the theory and modeling approaches used in the field. This issue is particularly complex in neuroscience because the field studies phenomena that cross a wide range of scales and often require consideration at varying degrees of abstraction, from precise biophysical interactions to the computations they implement. We argue that a pragmatic perspective of science, in which descriptive, mechanistic, and normative models and theories each play a distinct role in defining and bridging levels of abstraction, will facilitate neuroscientific practice. This analysis leads to methodological suggestions, including selecting a level of abstraction that is appropriate for a given problem, identifying transfer functions to connect models and data, and the use of models themselves as a form of experiment.


Subject(s)
Neurosciences , Biophysics
3.
Sci Data ; 9(1): 114, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35351911

ABSTRACT

Cognitive control is a critical higher mental function, which is subject to considerable individual variation, and is impaired in a range of mental health disorders. We describe here the initial release of Dual Mechanisms of Cognitive Control (DMCC) project data, the DMCC55B dataset, with 55 healthy unrelated young adult participants. Each participant performed four well-established cognitive control tasks (AX-CPT, Cued Task-Switching, Sternberg Working Memory, and Stroop) while undergoing functional MRI scanning. The dataset includes a range of state and trait self-report questionnaires, as well as behavioural tasks assessing individual differences in cognitive ability. The DMCC project is on-going and features additional components (e.g., related participants, manipulations of cognitive control mode, resting state fMRI, longitudinal testing) that will be publicly released following study completion. This DMCC55B subset is released early with the aim of encouraging wider use and greater benefit to the scientific community. The DMCC55B dataset is suitable for benchmarking and methods exploration, as well as analyses of task performance and individual differences.


Subject(s)
Brain , Cognition , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Memory, Short-Term , Neuropsychological Tests , Young Adult
4.
Front Neuroimaging ; 1: 982288, 2022.
Article in English | MEDLINE | ID: mdl-37555140

ABSTRACT

Transcranial electrical stimulation (tES) technology and neuroimaging are increasingly coupled in basic and applied science. This synergy has enabled individualized tES therapy and facilitated causal inferences in functional neuroimaging. However, traditional tES paradigms have been stymied by relatively small changes in neural activity and high inter-subject variability in cognitive effects. In this perspective, we propose a tES framework to treat these issues which is grounded in dynamical systems and control theory. The proposed paradigm involves a tight coupling of tES and neuroimaging in which M/EEG is used to parameterize generative brain models as well as control tES delivery in a hybrid closed-loop fashion. We also present a novel quantitative framework for cognitive enhancement driven by a new computational objective: shaping how the brain reacts to potential "inputs" (e.g., task contexts) rather than enforcing a fixed pattern of brain activity.

5.
Neuroimage ; 247: 118836, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34942364

ABSTRACT

Brain responses recorded during fMRI are thought to reflect both rapid, stimulus-evoked activity and the propagation of spontaneous activity through brain networks. In the current work, we describe a method to improve the estimation of task-evoked brain activity by first "filtering-out the intrinsic propagation of pre-event activity from the BOLD signal. We do so using Mesoscale Individualized NeuroDynamic (MINDy; Singh et al. 2020b) models built from individualized resting-state data to subtract the propagation of spontaneous activity from the task-fMRI signal (MINDy-based Filtering). After filtering, time-series are analyzed using conventional techniques. Results demonstrate that this simple operation significantly improves the statistical power and temporal precision of estimated group-level effects. Moreover, use of MINDy-based filtering increased the similarity of neural activation profiles and prediction accuracy of individual differences in behavior across tasks measuring the same construct (cognitive control). Thus, by subtracting the propagation of previous activity, we obtain better estimates of task-related neural effects.


Subject(s)
Connectome/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Motor Cortex/physiology , Benchmarking , Cognition/physiology , Female , Humans , Image Enhancement/methods , Individuality , Male , Rest , Young Adult
6.
Annu Rev Control ; 54: 363-376, 2022.
Article in English | MEDLINE | ID: mdl-38250171

ABSTRACT

The development of technologies for brain stimulation provides a means for scientists and clinicians to directly actuate the brain and nervous system. Brain stimulation has shown intriguing potential in terms of modifying particular symptom clusters in patients and behavioral characteristics of subjects. The stage is thus set for optimization of these techniques and the pursuit of more nuanced stimulation objectives, including the modification of complex cognitive functions such as memory and attention. Control theory and engineering will play a key role in the development of these methods, guiding computational and algorithmic strategies for stimulation. In particular, realizing this goal will require new development of frameworks that allow for controlling not only brain activity, but also latent dynamics that underlie neural computation and information processing. In the current opinion, we review recent progress in brain stimulation and outline challenges and potential research pathways associated with exogenous control of cognitive function.

7.
J R Soc Interface ; 17(170): 20200126, 2020 09.
Article in English | MEDLINE | ID: mdl-32900299

ABSTRACT

Equilibria, or fixed points, play an important role in dynamical systems across various domains, yet finding them can be computationally challenging. Here, we show how to efficiently compute all equilibrium points of discrete-valued, discrete-time systems on sparse networks. Using graph partitioning, we recursively decompose the original problem into a set of smaller, simpler problems that are easy to compute, and whose solutions combine to yield the full equilibrium set. This makes it possible to find the fixed points of systems on arbitrarily large networks meeting certain criteria. This approach can also be used without computing the full equilibrium set, which may grow very large in some cases. For example, one can use this method to check the existence and total number of equilibria, or to find equilibria that are optimal with respect to a given cost function. We demonstrate the potential capabilities of this approach with examples in two scientific domains: computing the number of fixed points in brain networks and finding the minimal energy conformations of lattice-based protein folding models.


Subject(s)
Algorithms , Protein Folding
8.
Neuroimage ; 221: 117046, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32603858

ABSTRACT

A key challenge for neuroscience is to develop generative, causal models of the human nervous system in an individualized, data-driven manner. Previous initiatives have either constructed biologically-plausible models that are not constrained by individual-level human brain activity or used data-driven statistical characterizations of individuals that are not mechanistic. We aim to bridge this gap through the development of a new modeling approach termed Mesoscale Individualized Neurodynamic (MINDy) modeling, wherein we fit nonlinear dynamical systems models directly to human brain imaging data. The MINDy framework is able to produce these data-driven network models for hundreds to thousands of interacting brain regions in just 1-3 â€‹min per subject. We demonstrate that the models are valid, reliable, and robust. We show that MINDy models are predictive of individualized patterns of resting-state brain dynamical activity. Furthermore, MINDy is better able to uncover the mechanisms underlying individual differences in resting state activity than functional connectivity methods.


Subject(s)
Brain/physiology , Connectome/methods , Magnetic Resonance Imaging/methods , Models, Theoretical , Neural Networks, Computer , Adult , Brain/diagnostic imaging , Computer Simulation , Humans , Image Interpretation, Computer-Assisted , Individuality , Nerve Net/diagnostic imaging , Nerve Net/physiology , Reproducibility of Results
9.
J Neural Eng ; 17(4): 046025, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32590377

ABSTRACT

OBJECTIVE: For many biophysical systems, direct measurement of all state-variables, in - vivo is not feasible. Thus, a key challenge in biological modeling and signal processing is to reconstruct the activity and structure of interesting biological systems from indirect measurements. These measurements are often generated by approximately linear time-invariant dynamical interactions with the hidden system and may therefore be described as a convolution of hidden state-variables with an unknown kernel. APPROACH: In the current work, we present an approach termed surrogate deconvolution, to directly identify such coupled systems (i.e. parameterize models). Surrogate deconvolution reframes certain non linear partially-observable identification problems, which are common in neuroscience/biology, as analytical objectives that are compatible with almost any user-chosen optimization procedure. MAIN RESULTS: We show that the proposed technique is highly scalable, low in computational complexity, and performs competitively with the current gold-standard in partially-observable system estimation: the joint Kalman Filters (Unscented and Extended). We show the benefits of surrogate deconvolution for model identification when applied to simulations of the Local Field Potential and blood oxygen level dependent (BOLD) signal. Lastly, we demonstrate the empirical stability of Hemodynamic Response Function (HRF) kernel estimates for Mesoscale Individualized NeuroDynamic (MINDy) models of individual human brains. The recovered HRF parameters demonstrate reliable individual variation as well as a stereotyped spatial distribution, on average. SIGNIFICANCE: These results demonstrate that surrogate deconvolution promises to enhance brain-modeling approaches by simultaneously and rapidly fitting large-scale models of brain networks and the physiological processes which generate neuroscientific measurements (e.g. hemodynamics for BOLD fMRI).


Subject(s)
Algorithms , Brain , Brain/diagnostic imaging , Computer Simulation , Humans , Magnetic Resonance Imaging , Reproducibility of Results
10.
J Neurosci Methods ; 308: 88-105, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29966600

ABSTRACT

BACKGROUND: Over the past decade, pattern decoding techniques have granted neuroscientists improved anatomical specificity in mapping neural representations associated with function and cognition. Dynamical patterns are of particular interest, as evidenced by the proliferation and success of frequency domain methods that reveal structured spatiotemporal rhythmic brain activity. One drawback of such approaches, however, is the need to estimate spectral power, which limits the temporal resolution of classification. NEW METHOD: We propose an alternative method that enables classification of dynamical patterns with high temporal fidelity. The key feature of the method is a conversion of time-series data into temporal derivatives. By doing so, dynamically-coded information may be revealed in terms of geometric patterns in the phase space of the derivative signal. RESULTS: We derive a geometric classifier for this problem which simplifies into a straightforward calculation in terms of covariances. We demonstrate the relative advantages and disadvantages of the technique with simulated data and benchmark its performance with an EEG dataset of covert spatial attention. We reveal the timecourse of covert spatial attention and, by mapping the classifier weights anatomically, its retinotopic organization. COMPARISON WITH EXISTING METHOD: We especially highlight the ability of the method to provide strong group-level classification performance compared to existing benchmarks, while providing information that is complementary with classical spectral-based techniques. The robustness and sensitivity of the method to noise is also examined relative to spectral-based techniques. CONCLUSION: The proposed classification technique enables decoding of dynamic patterns with high temporal resolution, performs favorably to benchmark methods, and facilitates anatomical inference.


Subject(s)
Brain Mapping/methods , Brain/physiology , Electroencephalography , Neurons/physiology , Signal Processing, Computer-Assisted , Data Interpretation, Statistical , Humans , Machine Learning , Models, Statistical , Neural Pathways/physiology
11.
Article in English | MEDLINE | ID: mdl-26321940

ABSTRACT

Relatively recent advances in patch clamp recordings and iontophoresis have enabled unprecedented study of neuronal post-synaptic integration ("dendritic integration"). Findings support a separate layer of integration in the dendritic branches before potentials reach the cell's soma. While integration between branches obeys previous linear assumptions, proximal inputs within a branch produce threshold nonlinearity, which some authors have likened to the sigmoid function. Here we show the implausibility of a sigmoidal relation and present a more realistic transfer function in both an elegant artificial form and a biophysically derived form that further considers input locations along the dendritic arbor. As the distance between input locations determines their ability to produce nonlinear interactions, models incorporating dendritic topology are essential to understanding the computational power afforded by these early stages of integration. We use the biophysical transfer function to emulate empirical data using biophysical parameters and describe the conditions under which the artificial and biophysically derived forms are equivalent.

SELECTION OF CITATIONS
SEARCH DETAIL
...