Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
J Environ Manage ; 336: 117730, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36921476

ABSTRACT

Soil and water pollution, rapid industrialization, contaminated irrigation-water, increased waste-production and surge in agricultural land leads to the accumulation of Heavy Metals (HM) with time. HM contamination has raised concern over the past years and new remediation strategies are required to deal with it. HM-contaminated soil is often used for the production of food, which makes a gateway for toxic metals into the food-chain, thereby affecting food security and human health. To avoid HM-toxicity, decontamination of important resources is essential. Therefore, exploring phytoremediation for the removal, decomposition and detoxification of hazardous metals from HM-contaminated sites is of great significance. Hyper-accumulator plants can efficiently remove HMs. However, despite many hyper-accumulator plant species, there is a research gap in the studies of phytotechnology. Hence biotechnological efforts advocating omics studies i.e. genomics, transcriptomics, proteomics, metabolomics and phenomics are in order, the purpose being to select and enhance a plant's potential for the process of phytoremediation to be more effective. There is a need to study newly developed high-efficiency hyper-accumulator plants as HM-decontaminator candidates for phytoremediation and phytomining. Therefore, this review focuses on various strategies and bio-technological methods for the removal of HM contaminants from sites, with emphasis on the advancement of phytoremediation, along with applications in cleaning up various toxic pollutants.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Biodegradation, Environmental , Soil Pollutants/analysis , Plants , Metals, Heavy/analysis , Soil
3.
Biotechnol Genet Eng Rev ; 39(1): 45-84, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35699384

ABSTRACT

Human cancer remains a cause of high mortality throughout the world. The conventional methods and therapies currently employed for treatment are followed by moderate-to-severe side effects. They have not generated curative results due to the ineffectiveness of treatments. Besides, the associated high costs, technical requirements, and cytotoxicity further characterize their limitations. Due to relatively higher presidencies, bioactive peptides with anti-cancer attributes have recently become treatment choices within the therapeutic arsenal. The peptides act as potential anti-cancer agents explicitly targeting tumor cells while being less toxic to normal cells. The anti-cancer peptides are isolated from various natural sources, exhibit high selectivity and high penetration efficiency, and could be quickly restructured. The therapeutic benefits of compatible anti-cancer peptides have contributed to the significant expansion of cancer treatment; albeit, the mechanisms by which bioactive peptides inhibit the proliferation of tumor cells remain unclear. This review will provide a framework for assessing anti-cancer peptides' structural and functional aspects. It shall provide appropriate information on their mode of action to support and strengthen efforts to improve cancer prevention. The article will mention the therapeutic health benefits of anti-cancer peptides. Their importance in clinical studies is elaborated for reducing cancer incidences and developing sustainable treatment models.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Neoplasms/drug therapy , Peptides/therapeutic use
4.
Front Nutr ; 8: 708194, 2021.
Article in English | MEDLINE | ID: mdl-34651008

ABSTRACT

This paper is a review of the potential health benefits of barley melanoidins. Food melanoidins are still rather understudied, despite their potential antioxidant, antimicrobial, and prebiotic properties. Free radicals are villainous substances in humans produced as metabolic byproducts and causing cancers and cardiovascular diseases, and the melanoidins alleviate the effects of these free radicals. Malt is produced from cereal grains such as barley, wheat, and maize, and barley is predominantly used in beer production. Beer (alcoholic and non-alcoholic) is a widely consumed beverage worldwide and a good source of dietary melanoidins, which enhance the beers' flavor, texture, and sensorial properties. Melanoidins, the final products of the Maillard reaction, are produced at different stages during the brewing process. Beer melanoidins protect the cells from oxidative damage of DNA. The high reducing capacity of melanoidins can induce hydroxyl radicals from H2O2 in the presence of ferric ion (Fe3+). Melanoidins inhibit lipid peroxidation during digestion due to their chelating metal property. However, lower digestibility of melanoidins leads to less availability to the organisms but is considered to function as dietary fiber that can be metabolized by the lower gut microbiota and possibly incur prebiotic properties. Melanoidins promote the growth of Lactobacilli and Bifidobacteria in the gastrointestinal tract, preventing the colonization of potential pathogens. Barley is already popular through beer production and increasingly as a functional food. Considering this economic and industrial importance, more research to explore the chemical properties of barley melanoidins and corresponding health benefits as barley is warranted.

5.
J Environ Manage ; 169: 78-83, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26724506

ABSTRACT

Melanoidin is the hazardous byproduct formed during the production of ethanol in distilleries. In the present study, a highly effective melanoidin decolorizing bacterial isolate, SAG1, was isolated from the effluent enriched soil of a distillery. This strain, identified as Paracoccus pantotrophus, was highly efficient to decolorize melanoidins up to 81.2 ± 2.43% in the presence of glucose and NH4NO3. The effects of autoclaved as well as living cells and inoculums size on decolorization activity were investigated. The results indicated that only living cell showed the decolorization activity i.e. 78.6 ± 2.62%, while, no activity has been observed using autoclaved cells. The inoculums size of 8% v/v, showed maximum activity of 62.9 ± 3.00%. The isolate SAG1 was found to be more efficient in decolorizing the melanoidins from distillery effluent as compared to the reference culture Pseudomonas putida.


Subject(s)
Paracoccus pantotrophus/metabolism , Polymers/metabolism , Water Pollutants, Chemical/metabolism , Water Purification/methods , Paracoccus pantotrophus/classification , Waste Management/methods
6.
J Agric Food Chem ; 60(17): 4320-6, 2012 May 02.
Article in English | MEDLINE | ID: mdl-22494338

ABSTRACT

Salicornia brachiata is an extreme halophyte that grows in salty marshes and is considered to be a potential alternative crop for seawater agriculture. Salicornia seeds are rich in protein, and its tender shoots are eaten as salad greens. Seed storage proteins were fractionated by sequential extraction using different solvents, including distilled water for albumins, NaCl (1.0 M) for globulins, NaOH (0.1 N) for glutelins, and ethanol (70% v/v) for prolamins. Globulins accounted for 54.75% of the total seed storage proteins followed by albumins (34.30%) and glutelins (8.70%). The fractionated proteins were characterized using 2D-diagonal SDS-PAGE and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. The globulin fraction, composed of seven intermolecular disulfide-linked polypeptide pairs of molecular mass 63.5, 62.5, 54.7, 53.0, 43.2, 38.5, and 35.1 kDa, encompassed a basic and an acidic subunit. Two-dimensional gels revealed approximately 32 spots, with isoelectric points and molecular masses ranging from 4.93 to 11.6 and from ∼5.2 to ∼109.4 kDa, respectively. Protein spots were identified by MALDI-TOF MS peptide mass fingerprint analysis and further classified. Homology analysis demonstrated that 19% of the proteins were involved in metabolism, 16% were involved in signaling, and 15% were regulatory proteins. Peptide mass fingerprint analysis confirmed the presence of inter- and intramolecular disulfide linkages in the globulin fraction. Sulfur-rich proteins are of high nutritional value, and disulfides make S. brachiata a potential source of dietary supplementation.


Subject(s)
Chenopodiaceae/chemistry , Nutritive Value , Plant Proteins/analysis , Salt-Tolerant Plants/chemistry , Seed Storage Proteins/analysis , Seeds/chemistry , Chemical Fractionation , Disulfides/chemistry , Electrophoresis, Polyacrylamide Gel , Seed Storage Proteins/chemistry , Seed Storage Proteins/classification , Solubility , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL