Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; 12(6): e0129722, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37166306

ABSTRACT

Here, we report the genome sequence of a Pasteurella multocida strain isolated from the heart blood of a spotted deer (Bareilly, India). The 2.44-Mbp genome has 2,227 coding sequences, with a G+C content of 40.7%.

2.
Anim Biotechnol ; 33(6): 1025-1034, 2022 Nov.
Article in English | MEDLINE | ID: mdl-33427030

ABSTRACT

A microcapillary-based loop-mediated isothermal amplification (µcLAMP) has been described for specific detection of infectious reproductive pathogens in semen samples of cattle without sophisticated instrumentation. Brucella abortus, Leptospira interrogans serovar Pomona and bovine herpesvirus 1 (BoHV-1) cultures were mixed in bovine semen samples. The µcLAMP assay is portable, user-friendly, cost-effective, and suitable to be performed as a POC diagnostic test. We have demonstrated high sensitivity and specificity of µcLAMP for detection of Brucella, Leptospira, and BoHV-1 in bovine semen samples comparable to PCR and qPCR assays. Thus, µcLAMP would be a promising field-based test for monitoring various infectious pathogens in biological samples.HighlightsDetect infectious organism in bovines semenReduction in carryover contamination is an important attribute, which may reduce the false-positive reaction.µcLAMP is a miniaturized form, which could be performed with a minimum volume of reagents.The µcLAMP assay is portable, user-friendly, and suitable to be performed as a POC diagnostic test.


Subject(s)
Herpesvirus 1, Bovine , Semen , Cattle , Animals , Nucleic Acid Amplification Techniques , Herpesvirus 1, Bovine/genetics , Real-Time Polymerase Chain Reaction/veterinary , Sensitivity and Specificity
3.
Vaccines (Basel) ; 9(12)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34960169

ABSTRACT

Vaccination of cattle and buffaloes with Brucella abortus strain 19 has been the mainstay for control of bovine brucellosis. However, vaccination with S19 suffers major drawbacks in terms of its safety and interference with serodiagnosis of clinical infection. Brucella abortus S19∆per, a perosamine synthetase wbkB gene deletion mutant, overcomes the drawbacks of the S19 vaccine strain. The present study aimed to evaluate the potential of Brucella abortus S19Δper vaccine candidate in the natural host, buffaloes. Safety of S19∆per, for animals use, was assessed in guinea pigs. Protective efficacy of vaccine was assessed in buffaloes by immunizing with normal dose (4 × 1010 colony forming units (CFU)/animal) and reduced dose (2 × 109 CFU/animal) of S19Δper and challenged with virulent strain of B. abortus S544 on 300 days post immunization. Bacterial persistency of S19∆per was assessed in buffalo calves after 42 days of inoculation. Different serological, biochemical and pathological studies were performed to evaluate the S19∆per vaccine. The S19Δper immunized animals showed significantly low levels of anti-lipopolysaccharides (LPS) antibodies. All the immunized animals were protected against challenge infection with B. abortus S544. Sera from the majority of S19Δper immunized buffalo calves showed moderate to weak agglutination to RBPT antigen and thereby, could apparently be differentiated from S19 vaccinated and clinically-infected animals. The S19Δper was more sensitive to buffalo serum complement mediated lysis than its parent strain, S19. Animals culled at 6-weeks-post vaccination showed no gross lesions in organs and there was comparatively lower burden of infection in the lymph nodes of S19Δper immunized animals. With attributes of higher safety, strong protective efficacy and potential of differentiating infected from vaccinated animals (DIVA), S19Δper would be a prospective alternate to conventional S19 vaccines for control of bovine brucellosis as proven in buffaloes.

5.
Vet World ; 13(2): 360-363, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32255980

ABSTRACT

BACKGROUND AND AIM: Extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli are gradually increasing worldwide and carry a serious public threat. This study aimed to determine the antimicrobial resistance pattern of ESBL-producing E. coli isolated from fecal samples of piglets and pig farm workers. MATERIALS AND METHODS: Fecal samples from <3-month-old piglets (n=156) and farm workers (n=21) were processed for the isolation of ESBL-producing E. coli in MacConkey agar added with 1 µg/mL of cefotaxime. E. coli (piglets=124; farm workers=21) were tested for ESBL production by combined disk method and ESBL E-strip test. Each of the ESBL-positive isolate was subjected to antibiotic susceptibility testing. The ESBL-producing E. coli were further processed for genotypic confirmation to CTX-M gene. RESULTS: A total of 55 (44.4%, 55/124) and nine (42.9%, 9/21) ESBL-producing E. coli were isolated from piglets and farm workers, respectively. Antibiotic susceptibility testing of the ESBL-positive E. coli isolates from piglets and farm workers showed 100% resistance to ceftazidime, cefotaxime, cefotaxime/clavulanic acid, ceftazidime/clavulanic acid, and cefpodoxime. A proportion of 100% (55/55) and 88.9% (8/9) ESBL-positive E. coli were multidrug resistance (MDR) in piglets and farm workers, respectively. On genotypic screening of the ESBL E. coli isolated from piglets (n=55), 15 were positive for the bla CTX-M gene and of the nine ESBL E. coli from farm workers, none were positive for the bla CTX-M gene. CONCLUSION: Although there was no significant difference in isolation of ESBL-producing E. coli between piglets and farm workers, the ESBL-positive E. coli from piglets showed relatively higher MDR than farm workers.

6.
Front Microbiol ; 10: 2664, 2019.
Article in English | MEDLINE | ID: mdl-31803171

ABSTRACT

Carvacrol is a herbal antimicrobial agent with in vitro activity against several bacterial pathogens. However, multidrug resistant strains of Pseudomonas aeruginosa are resistant to herbal antimicrobial compounds including carvacrol. Resistance of P. aeruginosa to carvacrol is not well studied. This study was aimed to identify the gene(s) associated with carvacrol resistance, thus to understand its mechanisms in P. aeruginosa. A herbal drug resistant strain was isolated from a hospital environment. Carvacrol sensitive mutant was generated using transposon mutagenesis. The inactivated gene in the mutant was identified as mexA, which is part of the mexAB-oprM operon. Inactivation of the mexA gene resulted in a >31-fold reduction in MIC of carvacrol, whereas a >80-fold reduction was observed in the presence of drug efflux inhibitor phenylalanine-arginine ß-naphthylamide (PAßN). The parental herbal-resistant strain was completely killed within 3 h of incubation in the presence of carvacrol and PAßN. The mexA inactivation did not affect the resistance to other herbal compounds used. The results demonstrate that resistance to carvacrol in P. aeruginosa is mediated by the MexAB-OprM efflux pump.

7.
Anal Biochem ; 579: 25-34, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31128087

ABSTRACT

Livestock are critical component for supporting the sustainable agriculture in the current global scenario. In the era of artificial intelligence and automation in field of livestock, sensors play an important role. Electrochemical sensor is the type of sensor which holds reliability and tremendous promise in raising the animal productivity in developing world. An early and accurate diagnosis of the animal pathogen and metabolic status are the cornerstone for better animal productivity. The available diagnostic techniques require tedious sample preparation, sophisticated instrument, dedicated laboratory, trained personnel and it is time consuming also. The electrochemical biosensor technology might be a smart solution because of its sensitivity, simplicity, low cost, possible miniaturization and potential ability for real-time analysis. In the veterinary disease diagnostics, various biosensors including electrochemical biosensors have been developed recently, based on disease specific biomarkers. The main focus of article is on reviewing the research in detection of animal infectious and metabolic diseases, hormonal analysis and sweat analysis with electrochemical biosensor.


Subject(s)
Animals, Domestic/microbiology , Biosensing Techniques/methods , Electrochemical Techniques/methods , Infections , Animals , Infections/diagnosis , Infections/veterinary , Point-of-Care Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...