Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Int J Biol Macromol ; 273(Pt 2): 133142, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38889830

ABSTRACT

The present research reports the anti-cancer potential of recombinant L-Glutaminase from Streptomyces roseolus. L-Glutaminase gene was synthesized by codon-optimization, cloned and successfully expressed in E. coli BL21 (DE3). Affinity purified recombinant L-Glutaminase revealed a molecular mass of 32 kDa. Purified recombinant L-Glutaminase revealed stability at pH 7.0-8.0 with optimum activity at 70 °C further indicating its thermostable nature based on thermodynamic characterization. Recombinant L-Glutaminase exhibited profound stability in the presence of several biochemical parameters and demonstrated its metalloenzyme nature and was also found to be highly specific towards favorable substrate (l-Glutamine) based on kinetics. It demonstrated antioxidant property and pronounced cytotoxic effect against breast cancer (MCF-7 cell lines) in a dose dependent behavior with IC50 of 40.68 µg/mL. Matrix-assisted laser desorption ionization-time of flight-mass spectroscopy (MALDI-TOF-MS) analysis of desired mass peaks ascertained the recombinant L-Glutaminase identity. N-terminal amino acid sequence characterization through Edman degradation revealed highest resemblance for L-glutaminase within the Streptomyces sp. family. The purified protein was characterized structurally and functionally by employing spectroscopic methods like Raman, circular dichroism and nuclear magnetic resonance. The thermostability was assessed by thermogravimetric analysis. The outcomes of the study, suggests the promising application of recombinant L-Glutaminase as targeted therapeutic candidate for breast cancer.

2.
Cureus ; 16(5): e59976, 2024 May.
Article in English | MEDLINE | ID: mdl-38860064

ABSTRACT

BACKGROUND: The choice of irrigation fluid used in transurethral resection of the prostate (TURP) has a significant impact on serum electrolyte levels. Among the many available options, 0.9% normal saline (NS) is considered to be more physiological. MATERIAL AND METHODS: This observational study was conducted on 60 adult males aged 50-70 years, classified as American Society of Anesthesiologists grade 1 and 2, undergoing TURP with 0.9% NS irrigation under spinal anesthesia achieved with a mixture of 0.5% heavy bupivacaine. The patients' hematocrit and serum electrolyte levels were obtained after six hours and compared with preoperative values. RESULTS: Hematocrit reduced from 40.32 ± 6.27 to 31.07 ± 5.40 (p < 0.001). Both serum sodium and potassium decreased from 136.77 ± 3.27 to 128.31 ± 5.91 and from 4.02 ± 0.26 to 3.81 ± 0.36, respectively (p < 0.001). However, serum chloride showed only a minimal increase from 101.58 ± 2.88 to 102.25 ± 1.66 (p < 0.12). CONCLUSION: Although the changes in serum sodium and potassium were statistically significant, they did not have any physiological consequences in our study. However, this emphasizes the importance of vigilant electrolyte monitoring to identify and mitigate the risk of electrolyte disturbances during TURP surgeries.

3.
Int J Biol Macromol ; 249: 125960, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37517759

ABSTRACT

This study investigated the multifunctional attributes such as, antibacterial, antioxidant and anticancer potential of recombinant subtilisin. A codon-optimized subtilisin gene was synthesized from Bacillus subtilis and was successfully transformed into E. coli DH5α cells which was further induced for high level expression in E. coli BL21 (DE3). An affinity purified ~40 kDa recombinant subtilisin was obtained that revealed to be highly alkali-thermostable based on the thermodynamic parameters. The kinetic parameters were deduced that indicated higher affinity of N-Suc-F-A-A-F-pNA substrate towards subtilisin. Recombinant subtilisin demonstrated strong antibacterial activity against several pathogens and showed minimum inhibitory concentration of 0.06 µg/mL against B. licheniformis and also revealed high stability under the influence of several biochemical factors. It also displayed antioxidant potential in a dose dependent manner and exhibited cell cytotoxicity against A549 and MCF-7 cancerous cell lines with IC50 of 5 µM and 12 µM respectively. The identity of recombinant subtilisin was established by MALDI-TOF mass spectrum depicting desired mass peaks and N-terminal sequence as MRSK by MALDI-TOF-MS. The deduced N- terminal amino acid sequence by Edman degradation revealed high sequence similarity with subtilisins from Bacillus strains. The structural and functional analysis of recombinant antibacterial subtilisin was elucidated by Raman, circular dichroism and nuclear magnetic resonance spectroscopy and thermogravimetric analysis. The results contribute to the development of highly efficient subtilisin with enhanced catalytic properties making it a promising candidate for therapeutic applications in healthcare industries.


Subject(s)
Bacillus subtilis , Subtilisin , Subtilisin/genetics , Subtilisin/chemistry , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Cloning, Molecular , Amino Acid Sequence , Subtilisins/metabolism , Gene Expression
4.
Neurol India ; 71(2): 410-411, 2023.
Article in English | MEDLINE | ID: mdl-37148100
5.
ACS Chem Neurosci ; 14(11): 2217-2242, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37216500

ABSTRACT

Our present work demonstrates the successful design and synthesis of a new class of compounds based upon a multitargeted directed ligand design approach to discover new agents for use in Alzheimer's disease (AD). All the compounds were tested for their in vitro inhibitory potential against human acetylcholinesterase (hAChE), human butylcholinesterase (hBChE), ß-secretase-1 (hBACE-1), and amyloid ß (Aß) aggregation. Compounds 5d and 5f have shown hAChE and hBACE-1 inhibition comparable to donepezil, while hBChE inhibition was comparable to rivastigmine. Compounds 5d and 5f also demonstrated a significant reduction in the formation of Aß aggregates through the thioflavin T assay and confocal, atomic force, and scanning electron microscopy studies and significantly displaced the total propidium iodide, that is, 54 and 51% at 50 µM concentrations, respectively. Compounds 5d and 5f were devoid of neurotoxic liabilities against RA/BDNF (RA = retinoic acid; BDNF = brain-derived neurotrophic factor)-differentiated SH-SY5Y neuroblastoma cell lines at 10-80 µM concentrations. In both the scopolamine- and Aß-induced mouse models for AD, compounds 5d and 5f demonstrated significant restoration of learning and memory behaviors. A series of ex vivo studies of hippocampal and cortex brain homogenates showed that 5d and 5f elicit decreases in AChE, malondialdehyde, and nitric oxide levels, an increase in glutathione level, and reduced levels of pro-inflammatory cytokines, tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) mRNA. The histopathological examination of mice revealed normal neuronal appearance in the hippocampal and cortex regions of the brain. Western blot analysis of the same tissue indicated a reduction in Aß, amyloid precursor protein (APP)/Aß, BACE-1, and tau protein levels, which were non-significant compared to the sham group. The immunohistochemical analysis also showed significantly lower expression of BACE-1 and Aß levels, which was comparable to donepezil-treated group. Compounds 5d and 5f represent new lead candidates for developing AD therapeutics.


Subject(s)
Alzheimer Disease , Neuroblastoma , Humans , Mice , Animals , Alzheimer Disease/metabolism , Donepezil/pharmacology , Amyloid beta-Peptides/metabolism , Ligands , Brain-Derived Neurotrophic Factor , Piperazine , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Structure-Activity Relationship
7.
Toxicol Mech Methods ; 33(4): 293-306, 2023 May.
Article in English | MEDLINE | ID: mdl-36154553

ABSTRACT

Nuclear receptors (NRs) are ligand-modulated transcription factors that regulate multiple physiological functions in our body. Many NRs in their unliganded state are localized in the cytoplasm. The ligand-inducible nuclear translocation of NRs provides a valuable tool for studying the NR-ligand interactions and their downstream effects. The translocation response of NRs can be studied irrespective of the nature of the interacting ligand (agonist, antagonist, or a small molecule modulator). These nuclear translocation studies offer an advantage over promoter-reporter-based transcription assays where transcription response is observed only with the activating hormones or agonistic ligands. Globally, milk serves as a major dietary source. However, suspected presence of endocrine/metabolism-disrupting chemicals like bisphenols, parabens, organochlorine pesticides, carbamates, non-steroidal anti-inflammatory drugs, chloramphenicol, brominated flame retardants, etc. has been reported. Considering that these chemicals may impart serious developmental and metabolism-related health concerns, it is essential to develop assays suitable for the detection of xenobiotics present at differing levels in milk. Since milk samples cannot be used directly on cultured cells or for microscopy, a combination of screening strategies has been developed herein based on the revelation that i) lipophilic NR ligands can be successfully retrieved in milk-fat; ii) milk-fat treatment of cells is compatible with live-cell imaging studies; and finally, iii) treatment of cells with xenobiotics-spiked and normal milk derived fat provides a visual and quantifiable response of NR translocation in living cells. Utilizing a milk-fat extraction method and Green Fluorescent Protein (GFP) tagged NRs expressed in cultured mammalian cells, followed by an assessment of NR response proved to be an effective approach for screening xenobiotics present in milk samples.HighlightsDiverse endocrine and metabolism-disrupting chemicals are suspected to contaminate milk.Nuclear receptors serve as 'xenosensors' for assessing the presence of xenobiotics in milk.Nuclear import of steroid receptors with (ant)agonist can be examined in live cells.Lipophilic xenobiotics are extracted and observed enriched in milk-fat fraction.A comprehensive cell-based protocol aids in the detection of xenobiotics in milk.


Subject(s)
Endocrine Disruptors , Receptors, Steroid , Animals , Milk/chemistry , Milk/metabolism , Xenobiotics/toxicity , Ligands , Receptors, Cytoplasmic and Nuclear , Receptors, Steroid/metabolism , Endocrine Disruptors/toxicity , Endocrine Disruptors/analysis , Mammals/metabolism
8.
ACS Omega ; 7(45): 41531-41547, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36406583

ABSTRACT

The recent reports on milk consumption and its associated risk with hormone related disorders necessitates the evaluation of dairy products for the presence of endocrine disrupting chemicals (EDCs) and ensure the safety of consumers. In view of this, we investigated the possible presence of (anti)androgenic contaminants in raw and commercialized milk samples. For this purpose, a novel HepARE-Luc cell line that stably expresses human androgen receptor (AR) and the androgen responsive luciferase reporter gene was generated and used in the present study. Treatment of this cell line with androgens and corresponding antiandrogen (flutamide) stimulated or inhibited expression of reporter luciferase, respectively. Real time polymerase chain reaction and immunostaining results exhibited transcription response and translocation of AR from the cytoplasm to the nucleus in response to androgen. Observations implied that a cell-based xenobiotic screening assay via AR response can be conducted for assessing the (anti)androgenic ligands present in food chain including milk. Therefore, the cell line was further used to screen the (anti)androgenic activity of a total of 40 milk fat samples procured as raw or commercial milk. Some of the raw and commercial milk fat samples distinctly showed antiandrogenic activities. Subsequently, some commonly used environmental chemicals were also evaluated for their (anti)androgenic activities. Initial observations with molecular docking studies of experimental compounds were performed to assess their interaction with AR ligand binding domain. Furthermore, (anti)androgenic activities of these compounds were confirmed by performing luciferase assay using the HepARE-Luc cell line. None of the test compounds showed androgenic activities rather some of them like Bisphenol A (BPA) and rifamycin showed antiandrogenic activities. In conclusion, our results provide a valuable information about the assessment of (anti)androgenic activities present in milk samples. Overall, it is proposed that a robust cell-based CALUX assay can be used to assess the (anti)androgenic activities present in milk which can be attributed to different environmental chemicals present therein.

9.
Biosensors (Basel) ; 12(9)2022 Sep 11.
Article in English | MEDLINE | ID: mdl-36140134

ABSTRACT

The rise in number of infections from multidrug-resistant (MDR) Gram-negative microbes has led to an increase in the use of a variety of 'polymyxins' such as colistin. Even though colistin is known to cause minor nephro- and neuro-toxicity, it is still considered as last resort antibiotic for treating MDR infections. In this study, we have applied Raman spectroscopy to understand the differences among colistin sensitive and resistant bacterial strains at community level. We have successfully generated colistin resistant clones and verified the presence of resistance-causing MCR-1 plasmid. A unique spectral profile associated with specific drug concentration has been obtained. Successful delineation between resistant and sensitive cells has also been achieved via principal component analysis. Overall findings support the prospective utility of Raman spectroscopy in identifying anti-microbial resistance.


Subject(s)
Colistin , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Microbial Sensitivity Tests , Plasmids , Spectrum Analysis, Raman
10.
Gels ; 8(7)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35877488

ABSTRACT

Biosurfactants are eco-friendly surface-active molecules recommended for enhanced oil recovery techniques. In the present study, a potential lipopeptide (biosurfactant) encoding the iturin A gene was synthesized from Bacillus aryabhattai. To improvise the yield of the lipopeptide for specific applications, current research tends toward engineering and expressing recombinant peptides. An iturin A gene sequence was codon-optimized, amplified with gene-specific primers, and ligated into the pET-32A expression vector to achieve high-level protein expression. The plasmid construct was transformed into an E. coli BL21 DE3 host to evaluate the expression. The highly expressed recombinant iturin A lipopeptide was purified on a nickel nitrilotriacetic acid (Ni-NTA) agarose column. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed that the purity and molecular mass of iturin A was 41 kDa. The yield of recombinant iturin A was found to be 60 g/L with a 6.7-fold increase in comparison with our previously published study on the wild strain. The approach of cloning a functional fragment of partial iturin A resulted in the increased production of the lipopeptide. When motor oil was used, recombinant protein iturin A revealed a biosurfactant property with a 74 ± 1.9% emulsification index (E24). Purified recombinant protein iturin A was characterized by mass spectrometry. MALDI-TOF spectra of trypsin digestion (protein/trypsin of 50:1 and 25:1) showed desired digested mass peaks for the protein, further confirming the identity of iturin A. The iturin A structure was elucidated based on distinctive spectral bands in Raman spectra, which revealed the presence of a peptide backbone and lipid. Recombinant iturin A was employed for enhanced oil recovery through a sand-packed column that yielded 61.18 ± 0.85% additional oil. Hence, the novel approach of the high-level expression of iturin A (lipopeptide) as a promising biosurfactant employed for oil recovery from Bacillus aryabhattai is not much reported. Thus, recombinant iturin A demonstrated its promising ability for efficient oil recovery, finding specific applications in petroleum industries.

11.
Appl Spectrosc ; 76(10): 1263-1271, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35694822

ABSTRACT

Optical density based measurements are routinely performed to monitor the growth of microbes. These measurements solely depend upon the number of cells and do not provide any information about the changes in the biochemical milieu or biological status. An objective information about these parameters is essential for evaluation of novel therapies and for maximizing the metabolite production. In the present study, we have applied Raman spectroscopy to monitor growth kinetics of three different pathogenic Gram-negative microbes Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Spectral measurements were performed under 532 nm excitation with 5 seconds of exposure time. Spectral features suggest temporal changes in the "peptide" and "nucleic acid" content of cells under different growth stages. Using principal component analysis (PCA), successful discrimination between growth phases was also achieved. Overall, the findings are supportive of the prospective adoption of Raman based approaches for monitoring microbial growth.


Subject(s)
Pseudomonas aeruginosa , Spectrum Analysis, Raman , Principal Component Analysis , Prospective Studies , Spectrum Analysis, Raman/methods
12.
Appl Spectrosc ; 76(10): 1165-1173, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35684992

ABSTRACT

Understanding the biochemical changes in irradiated human mandible after radiotherapy of cancer patients is critical for oral rehabilitation. The underlying mechanism for radiation-associated changes in the bone at the molecular level could lead to implant failure and osteoradionecrosis. The study aimed to assess the chemical composition and bone quality in irradiated human mandibular bone using Raman spectroscopy. A total of 33 bone biopsies from 16 control and 17 irradiated patients were included to quantify different biochemical parameters from the Raman spectra. The differences in bone mineral and matrix band intensities between control and irradiated groups were analyzed using unpaired Student's t-test with statistical significance at p < 0.05. Findings suggest that the intensity of the phosphate band is significantly decreased and the carbonate band is significantly increased in the irradiated group. Further, the mineral crystallinity and carbonate to phosphate ratio are increased. The mineral to matrix ratio is decreased in the irradiated group. Principal component analysis (PCA) based on the local radiation dose and biopsy time interval of irradiated samples did not show any specific classification between irradiation sub-groups. Irradiation disrupted the interaction and bonding between the organic matrix and hydroxyapatite minerals affecting the bone biochemical properties. However, the normal clinical appearance of irradiated bone would have been accompanied by underlying biochemical and microscopical changes which might result in radiation-induced delayed complications.


Subject(s)
Mandible , Spectrum Analysis, Raman , Carbonates , Durapatite/chemistry , Humans , Mandible/radiation effects , Principal Component Analysis , Spectrum Analysis, Raman/methods
13.
Environ Geochem Health ; 44(1): 149-177, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34027568

ABSTRACT

Organochlorine pesticides (OCPs) are ubiquitous environmental contaminants widely used all over the world. These chlorinated hydrocarbons are toxic and often cause detrimental health effects because of their long shelf life and bioaccumulation in the adipose tissues of primates. OCP exposure to humans occurs through skin, inhalation and contaminated foods including milk and dairy products, whereas developing fetus and neonates are exposed through placental transfer and lactation, respectively. In 1960s, OCPs were banned in most developed countries, but because they are cheap and easily available, they are still widely used in most third world countries. The overuse or misuse of OCPs has been rising continuously which pose threats to environmental and human health. This review reports the comparative occurrence of OCPs in human and bovine milk samples around the globe and portrays the negative impacts encountered through the long history of OCP use.


Subject(s)
Hydrocarbons, Chlorinated , Pesticides , Animals , Female , Humans , Hydrocarbons, Chlorinated/analysis , Infant, Newborn , Milk/chemistry , Pesticides/analysis , Placenta , Pregnancy
14.
Circ Econ Sustain ; 1(4): 1479-1490, 2021.
Article in English | MEDLINE | ID: mdl-34888586

ABSTRACT

The COVID-19 pandemic had a devastating impact on the human health and global economy. The food and agriculture sectors have also felt these effects. In many countries, the measures taken to curb the spread of the virus were initiated to hinder the supply of agricultural products to markets and consumers inside and outside the borders. How this impacts the food safety, nutrition, and the livelihoods of farmers, fishermen, and others working in the food supply chain depends mainly on short-, medium-, and long-term policy responses. Epidemics pose severe challenges to the food system in the short term, but they also offer an opportunity to face challenges and accelerate the transformation of the food and agricultural sectors to increase resilience. The aim of the review was to highlight the valuable insight on the impact of COVID-19 on the Indian agricultural system and rural economy, as well as potential strategies for post-pandemic recovery.

15.
SA J Radiol ; 25(1): 2171, 2021.
Article in English | MEDLINE | ID: mdl-34956661

ABSTRACT

Racemose and intraventricular neurocysticercosis are uncommon types of neurocysticercosis, resulting in a multiloculated, grape-like cluster appearance in the cerebrospinal fluid (CSF) spaces. A male patient presented with symptoms of raised intracranial pressure and demonstrated racemose neurocysticercosis at an atypical location involving the region of the crus of the fornix at the level of the body of lateral ventricles on magnetic resonance imaging. Associated intraventricular neurocysticercosis was seen in the atrium of the left lateral ventricle and fourth ventricle.

16.
Sci Rep ; 11(1): 12509, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34131163

ABSTRACT

Otitis media, a common disease marked by the presence of fluid within the middle ear space, imparts a significant global health and economic burden. Identifying an effusion through the tympanic membrane is critical to diagnostic success but remains challenging due to the inherent limitations of visible light otoscopy and user interpretation. Here we describe a powerful diagnostic approach to otitis media utilizing advancements in otoscopy and machine learning. We developed an otoscope that visualizes middle ear structures and fluid in the shortwave infrared region, holding several advantages over traditional approaches. Images were captured in vivo and then processed by a novel machine learning based algorithm. The model predicts the presence of effusions with greater accuracy than current techniques, offering specificity and sensitivity over 90%. This platform has the potential to reduce costs and resources associated with otitis media, especially as improvements are made in shortwave imaging and machine learning.


Subject(s)
Ear, Middle/diagnostic imaging , Machine Learning , Otitis Media with Effusion/diagnosis , Otoscopy/methods , Algorithms , Ear, Middle/pathology , Humans , Otitis Media/diagnosis , Otitis Media/diagnostic imaging , Otitis Media/pathology , Otitis Media with Effusion/diagnostic imaging , Otitis Media with Effusion/pathology , Radio Waves
17.
Biol Trace Elem Res ; 199(4): 1316-1331, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32557113

ABSTRACT

Treatment of cancer has been limited by the poor efficacy and toxicity profiles of available drugs. There is a growing demand to develop alternative approaches to combat cancer such as use of nano-formulation-based drugs. Here, we report biosynthesis and characterization of silver nanoparticles (AgNPs) with papaya leaf extract (PLE) and its anti-cancer properties against different human cancer cells. Purified nanoparticles were characterized by standard techniques, such as TEM, STM, SEM, EDS, XRD, and FTIR. Furthermore, cytotoxic activity of AgNPs-PLE was carried out against different human cancer cells and non-tumorigenic human keratinocytes cells. AgNPs-PLE when compared with AgNPs-citric acid or PLE showed better efficacy against cancer cells and was also relatively less toxic to normal cells. Treatment of DU145 cells with AgNPs-PLE (0.5-5.0 µg/ml) for 24-48 h lowered total cell number by 24-36% (P < 0.05). Inhibition of cell growth was linked with arrest of cell cycle at G2/M phase at 24 h, while G1 and G2/M phase arrests at 48 h. ROS production was observed at earlier time points in presence of AgNPs-PLE, suggesting its role behind apoptosis in DU145 cells. Induction of apoptosis (57%) was revealed by AO/EB staining in DU145 cells along with induction of Bax, cleaved caspase-3, and cleaved PARP proteins. G1-S phase cell cycle check point marker, cyclin D1 was down-regulated along with an increase in cip1/p21 and kip1/p27 tumor suppressor proteins by AgNPs-PLE. These findings suggest the anti-cancer properties of AgNPs-PLE.


Subject(s)
Apoptosis , Carica , Cell Cycle Checkpoints , Metal Nanoparticles , Prostatic Neoplasms , Humans , Male , Plant Extracts/pharmacology , Prostate , Prostatic Neoplasms/pathology , Silver/pharmacology
18.
Front Pharmacol ; 11: 1343, 2020.
Article in English | MEDLINE | ID: mdl-33013374

ABSTRACT

Motion capture has the potential to shed light on topical drug delivery application. This approach holds promise both as a training tool, and for the development of skin technology, but first, this approach requires validation. Elongated microparticles (EMP) are a physical delivery enhancement technology that relies on a user working in the microparticles using a textured applicator. We used this approach to test the hypothesis that motion capture data can be used to characterize the topical application process. Motion capture was used to record participants while applying a mixture of EMP and sodium fluorescein to ex-vivo porcine skin samples. Treated skin was assessed using reflectance confocal and fluorescence microscopy. Image analysis was used to quantify the microparticle density and the presence of a fluorescent drug surrogate, sodium fluorescein. A strong correlation was present between applicator motion and microparticle and drug delivery profiles. There were quantitative and qualitative differences in the intra- and inter- user application methods that went beyond the level of training. Frequency and velocity of the applicator motion were key factors that correlated with EMP density. Our quantitative analysis of an experimental dermatological device supports the hypothesis that self-application may benefit from some form of digital monitoring or training with feedback. Our conclusion is that the integration of motion capture into experimental dermatological research offers an improved and quantifiable perspective that could be broadly useful with respect to topical applications, and with respect to the instruction provided to patients and clinicians.

19.
Daru ; 28(2): 735-744, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32367410

ABSTRACT

INTRODUCTION: Papaya (Carica papaya Linn.) belongs to the family Caricaceae and is well known for its therapeutic and nutritional properties all over the world. The different parts of the papaya plant have been used since ancient times for its therapeutic applications. Herein, we aimed to review the anticancer, anti-inflammatory, antidiabetic and antiviral activities of papaya leaf. METHODS: All information presented in this review article regarding the therapeutic application of Carica papaya leaf extract has been acquired by approaching various electronic databases, including Scopus, Google scholar, Web of science, and PubMed. The keywords Carica papaya, anticancer, anti-inflammatory, immunomodulatory, and phytochemicals were explored until December 2019. RESULTS: The papaya plant, including fruit, leaf, seed, bark, latex, and their ingredients play a major role in the management of disease progression. Carica papaya leaf contains active components such as alkaloids, glycosides, tannins, saponins, and flavonoids, which are responsible for its medicinal activity. Additionally, the leaf juice of papaya increases the platelet counts in people suffering from dengue fever. CONCLUSION: The major findings revealed that papaya leaf extract has strong medicinal properties such as antibacterial, antiviral, antitumor, hypoglycaemic and anti-inflammatory activity. Furthermore, clinical trials are needed to explore the medicative potential of papaya leaf. Graphical abstract Graphical abstract showing the medicinal properties of Carica papaya leaf.


Subject(s)
Carica/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Databases, Chemical , Humans , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Molecular Structure , Plant Leaves/chemistry
20.
Phys Chem Chem Phys ; 22(3): 1665-1673, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31894784

ABSTRACT

Owing to combination of chemical and thermal stability, favorable molecular packing, and efficient electron transport, naphthalene diimide derivatives (NDIs) are promising materials for n-channel organic field effect transistors (OFETs). For tuning the properties of n-conductive organic semiconductors, as well as for improvement of their air stability, fluorination is a frequently used approach. In this study, we demonstrate how very small modification of the molecular structure - fluorine substitution in the p-position of the phenyl rings of N,N'-diphenyl-NDI (Ph-NDI) - dramatically changes the crystal packing but almost does not affect electron transport. We show that this two-atom modification of Ph-NDI changes the molecular packing motif from π-stacking to a herringbone one, in contrast with usually observed improvement of π-stacking with fluorination. This unexpected behavior is mainly attributed to changes in the electrostatic potential of the phenyl rings as a result of fluorination, which alters their relative orientation and modifies the packing of the NDI cores. Nevertheless, though the herringbone packing is typically considered as less favorable for charge transport, the theoretical electron mobility is slightly higher in the fluorinated Ph-NDI. The results obtained improve the understanding of the relationship between the molecular and crystal structures of organic semiconductors and their impact on charge transport, which is of key importance for rational design of high-mobility materials for organic electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...