Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 208(4): 881-897, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35101891

ABSTRACT

Diet plays an important role in lifestyle disorders associated with the disturbed immune system. During the study of methionine- and choline-deficient diet-induced nonalcoholic fatty liver disease, we observed a specific decrease in the plasmacytoid dendritic cell (pDC) fraction from murine spleens. While delineating the role for individual components, we identified that l-methionine supplementation correlates with representation of the pDC fraction. S-adenosylmethionine (SAM) is a key methyl donor, and we demonstrate that supplementation of methionine-deficient medium with SAM but not homocysteine reverses the defect in pDC development. l-Methionine has been implicated in maintenance of methylation status in the cell. Based on our observed effect of SAM and zebularine on DC subset development, we sought to clarify the role of DNA methylation in pDC biology. Whole-genome bisulfite sequencing analysis from the splenic DC subsets identified that pDCs display differentially hypermethylated regions in comparison with classical DC (cDC) subsets, whereas cDC1 and cDC2 exhibited comparable methylated regions, serving as a control in our study. We validated differentially methylated regions in the sorted pDC, CD8α+ cDC1, and CD4+ cDC2 subsets from spleens as well as FL-BMDC cultures. Upon analysis of genes linked with differentially methylated regions, we identified that differential DNA methylation is associated with the MAPK pathway such that its inhibition guides DC development toward the pDC subtype. Overall, our study identifies an important role for methionine in pDC biology.


Subject(s)
Choline/metabolism , DNA Methylation , Dendritic Cells/immunology , Dendritic Cells/metabolism , Diet , Methionine/metabolism , Animals , Biomarkers , Cell Differentiation/genetics , Cell Differentiation/immunology , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation , Homeostasis , Immunity, Innate , Immunophenotyping , MAP Kinase Signaling System , Methionine/deficiency , Mice , Protein Interaction Mapping , Transcriptome
2.
J Virol ; 95(21): e0040621, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34379515

ABSTRACT

Interferon regulatory factor 8 (IRF8), a myeloid lineage transcription factor, emerges as an essential regulator for microglial activation. However, the precise role of IRF8 during Japanese encephalitis virus (JEV) infection in the brain remains elusive. Here, we report that JEV infection enhances IRF8 expression in the infected mouse brain. Comparative transcriptional profiling of whole-brain RNA analysis and validation by quantitative reverse transcription-PCR (qRT-PCR) reveals an impaired interferon gamma (IFN-γ) and related gene expression in Irf8 knockout (Irf8-/-)-infected mice. Further, Ifnγ knockout (Ifnγ-/-) mice exhibit a reduced level of Irf8. Both Ifnγ-/- and Irf8-/- mice exhibit significantly reduced levels of activated (CD11b+ CD45hi, CD11b+ CD45lo, Cd68, and CD86) and infiltrating immune cells (Ly6C+, CD4, and CD8) in the infected brain compared to those of wild-type (WT) mice. However, a higher level of granulocyte cell (Ly6G+) infiltration is evident in Irf8-/- mice as well as the increased concentration of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein 1 (MCP1) levels in the brain. Interestingly, neither the Irf8-/- nor the Ifnγ-/- conferred protection against lethal JEV challenge to mice and exhibit augmentation in JEV replication in the brain. The gain of function of Irf8 by overexpressing functional IRF8 in an IRF8-deficient cell line attenuates viral replication and enhances IFN-γ production. Overall, we summarize that in the murine model of JEV encephalitis, IRF8 modulation affects JEV replication. We also show that lack of Irf8 affects immune cell abundance in circulation and the infected brain, leading to a reduction in IFN-γ level and increased viral load in the brain. IMPORTANCE Microglial cells, the resident macrophages in the brain, play a vital role in Japanese encephalitis virus (JEV) pathogenesis. The deregulated activity of microglia can be lethal for the brain. Therefore, it is crucial to understand the regulators that drive microglia phenotype changes and induce inflammation in the brain. Interferon regulatory factor 8 (IRF8) is a myeloid lineage transcription factor involved in microglial activation. However, the impact of IRF8 modulation on JEV replication remains elusive. Moreover, the pathways regulated by IRF8 to initiate and amplify pathological neuroinflammation are not well understood. Here, we demonstrated the effect of IRF8 modulation on JEV replication, microglial activation, and immune cells infiltration in the brain.


Subject(s)
Brain/virology , Encephalitis Virus, Japanese/immunology , Encephalitis, Japanese/immunology , Interferon Regulatory Factors/genetics , Interferon-gamma/immunology , Virus Replication/immunology , Animals , Brain/immunology , Encephalitis Virus, Japanese/physiology , Female , Gene Expression Regulation/immunology , Interferon Regulatory Factors/immunology , Interferon-gamma/genetics , Male , Mice , Mice, Knockout , Microglia/immunology , Microglia/physiology , Microglia/virology , Signal Transduction
3.
Cell Immunol ; 349: 104043, 2020 03.
Article in English | MEDLINE | ID: mdl-32044112

ABSTRACT

Type I Interferon (IFN) signaling plays a critical role in dendritic cell (DC) development and functions. Inhibition of hyper type I IFN signaling promotes cDC2 subtype development. Relb is essential to development of cDC2 subtype and here we analyzed its effect on type I IFN signaling in DCs. We show that Relb suppresses the homeostatic type I IFN signaling in cDC2 cultures. TLR stimulation of FL-DCs led to RelB induction coinciding with fall in IFN signatures; conforming with the observation Relb expression reduced TLR stimulated IFN induction along with decrease in ISGs. Towards understanding mechanism, we show that effects of RelB are mediated by increased levels of IκBα. We demonstrate that RelB dampened antiviral responses by lowering ISG levels and the defect in cDC2 development in RelB null mice can be rescued in Ifnar1-/- background. Overall, we propose a novel role of RelB as a negative regulator of the type I IFN signaling pathway; fine tuning development of cDC2 subtype.


Subject(s)
Dendritic Cells/immunology , Interferon Type I/immunology , NF-KappaB Inhibitor alpha/physiology , Transcription Factor RelB/physiology , Amino Acid Sequence , Animals , Cell Differentiation , Cells, Cultured , Crosses, Genetic , Dendritic Cells/classification , Dendritic Cells/cytology , Gene Expression Regulation/immunology , Mice , NIH 3T3 Cells , Newcastle disease virus/immunology , Peptides/pharmacology , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/physiology , Signal Transduction/immunology , Spleen/cytology , Transcription Factor RelB/deficiency , Transcription Factor RelB/genetics , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...