Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Glycobiology ; 33(10): 801-816, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37622990

ABSTRACT

Prior research on cholera toxin (CT) binding and intoxication has relied on human colonic cancer derived epithelial cells. While these transformed cell lines have been beneficial, they neither derive from small intestine where intoxication occurs, nor represent the diversity of small intestinal epithelial cells (SI-ECs) and variation in glycoconjugate expression among individuals. Here, we used human enteroids, derived from jejunal biopsies of multipledonors to study CT binding and intoxication of human non-transformed SI-ECs. We modulated surface expression of glycosphingolipids, glycoproteins and specific glycans to distinguish the role of each glycan/glycoconjugate. Cholera-toxin-subunit-B (CTB) mutants were generated to decipher the preference of each glycoconjugate to different binding sites and the correlation between CT binding and intoxication. Human enteroids contain trace amounts of GM1, but other glycosphingolipids may be contributing to CT intoxication. We discovered that inhibition of either fucosylation or O-glycosylation sensitize enteroids to CT-intoxication. This can either be a consequence of the removal of fucosylated "decoy-like-ligands" binding to CTB's non-canonical site and/or increase in the availability of Gal/GalNAc-terminating glycoconjugates binding to the canonical site. Furthermore, simultaneous inhibition of fucosylation and O-glycosylation increased the availability of additional Gal/GalNAc-terminating glycoconjugates but counteracted the sensitization in CT intoxication caused by inhibiting O-glycosylation because of reduction in fucose. This implies a dual role of fucose as a functional glycan and a decoy, the interplay of which influences CT binding and intoxication. Finally, while the results were similar for enteroids from different donors, they were not identical, pointing to a role for human genetic variation in determining sensitivity to CT.


Subject(s)
Cholera , Humans , Fucose , Cholera Toxin/chemistry , Cholera Toxin/metabolism , Ligands , Glycoconjugates , Polysaccharides , Glycosphingolipids
2.
ACS Appl Mater Interfaces ; 14(36): 40724-40737, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36018830

ABSTRACT

Pseudomonas aeruginosa is the leading nosocomial and community-acquired pathogen causing a plethora of acute and chronic infections. The Centers for Disease Control and Prevention has designated multidrug-resistant isolates of P. aeruginosa as a serious threat. A novel delivery vehicle capable of specifically targeting  P. aeruginosa, and encapsulating antimicrobials, may address the challenges associated with these infections. We have developed hetero-multivalent targeted liposomes functionalized with host cell glycans to increase the delivery of antibiotics to the site of infection. Previously, we have demonstrated that compared with monovalent liposomes, these hetero-multivalent liposomes bind with higher affinity to P. aeruginosa. Here, compared with nontargeted liposomes, we have shown that greater numbers of targeted liposomes are found in the circulation, as well as at the site of P. aeruginosa (PAO1) infection in the thighs of CD-1 mice. No significant difference was found in the uptake of targeted, nontargeted, and PEGylated liposomes by J774.A1 macrophages. Ciprofloxacin-loaded liposomes were formulated and characterized for size, encapsulation, loading, and drug release. In vitro antimicrobial efficacy was assessed using CLSI broth microdilution assays and time-kill kinetics. Lastly, PAO1-inoculated mice treated with ciprofloxacin-loaded, hetero-multivalent targeted liposomes survived longer than mice treated with ciprofloxacin-loaded, monovalent targeted, or nontargeted liposomes and free ciprofloxacin. Thus, liposomes functionalized with host cell glycans target P. aeruginosa resulting in increased retention of the liposomes in the circulation, accumulation at the site of infection, and increased survival time in a mouse surgical site infection model. Consequently, this formulation strategy may improve outcomes in patients infected with P. aeruginosa.


Subject(s)
Anti-Infective Agents , Pseudomonas Infections , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/therapeutic use , Ciprofloxacin , Liposomes , Mice , Microbial Sensitivity Tests , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa
3.
Methods Mol Biol ; 2460: 45-63, 2022.
Article in English | MEDLINE | ID: mdl-34972930

ABSTRACT

The nature of cell membrane fluidity permits glycans, which are attached to membrane proteins and lipids, to freely diffuse on cell surfaces. Through such two-dimensional motion, some weakly binding glycans can participate in lectin binding processes, eventually changing lectin binding behaviors. This chapter discusses a plasmonic nanocube sensor that allows users to detect lectin binding kinetics in a cell membrane mimicking environment. This assay only requires standard laboratory spectrometers, including microplate readers. We describe the basics of the technology in detail, including sensor fabrication, sensor calibration, data processing, a general protocol for detecting lectin-glycan interactions, and a troubleshooting guide.


Subject(s)
Lectins , Polysaccharides , Cell Membrane/metabolism , Kinetics , Lectins/metabolism , Membrane Proteins/metabolism , Polysaccharides/metabolism
4.
Glycobiology ; 29(5): 397-408, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30824941

ABSTRACT

We recently discovered that the nature of lectin multivalency and glycolipid diffusion on cell membranes could lead to the heteromultivalent binding (i.e., a single lectin simultaneously binding to different types of glycolipid ligands). This heteromultivalent binding may even govern the lectin-glycan recognition process. To investigate this, we developed a kinetic Monte Carlo simulation, which only considers the fundamental physics/chemistry principles, to model the process of lectin binding to glycans on cell surfaces. We found that the high-affinity glycan ligands could facilitate lectin binding to other low-affinity glycan ligands, even though these low-affinity ligands are barely detectable in microarrays with immobilized glycan ligands. Such heteromultivalent binding processes significantly change lectin binding behaviors. We hypothesize that living organisms probably utilize this mechanism to regulate the downstream lectin functions. Our finding not only offers a mechanism to describe the concept that lectins are pattern recognition molecules, but also suggests that the two overlooked parameters, surface diffusion of glycan ligand and lectin binding kinetics, can play important roles in glycobiology processes. In this paper, we identified the critical parameters that influence the heteromultivalent binding process. We also discussed how our discovery can impact the current lectin-glycan analysis.


Subject(s)
Lectins/chemistry , Polysaccharides/chemistry , Binding Sites , Kinetics , Molecular Dynamics Simulation , Monte Carlo Method
5.
Colloids Surf B Biointerfaces ; 175: 84-90, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30522011

ABSTRACT

Lectin hetero-multivalency, binding to two or more different types of ligands, has been demonstrated to play a role in case of both LecA (a Pseudomonas aeruginosa adhesin) and Cholera Toxin subunit B (a Vibrio cholerae toxin). In order to screen the ligand candidates that involve in hetero-multivalent binding from large molecular libraries, we present a turbidity-based emulsion agglutination (TEA) assay that can be conducted in a high-throughput format using the standard laboratory instruments and reagents. The benefit of this assay is that it relies on the use of emulsions that can be formed using ultrasonication, minimizing the bottleneck of substrate surface functionalization. By measuring the change in turbidity, we could quantify the lectin-induced aggregation rate of oil droplets to determine the relative binding strength between different ligand combinations. The TEA results are consistent with our prior binding results using a nanocube sensor. The developed TEA assay can serve as a high-throughput and customizable tool to screen the potential ligands involved in hetero-multivalent binding.


Subject(s)
Emulsions/metabolism , Latex Fixation Tests/methods , Lectins/metabolism , Nephelometry and Turbidimetry/methods , Algorithms , Bacterial Adhesion , Binding Sites , Cholera Toxin/metabolism , Emulsions/chemistry , Kinetics , Lectins/chemistry , Protein Binding , Pseudomonas aeruginosa/metabolism , Reproducibility of Results
6.
Sci Rep ; 8(1): 8419, 2018 05 30.
Article in English | MEDLINE | ID: mdl-29849092

ABSTRACT

A single glycan-lectin interaction is often weak and semi-specific. Multiple binding domains in a single lectin can bind with multiple glycan molecules simultaneously, making it difficult for the classic "lock-and-key" model to explain these interactions. We demonstrated that hetero-multivalency, a homo-oligomeric protein simultaneously binding to at least two types of ligands, influences LecA (a Pseudomonas aeruginosa adhesin)-glycolipid recognition. We also observed enhanced binding between P. aeruginosa and mixed glycolipid liposomes. Interestingly, strong ligands could activate weaker binding ligands leading to higher LecA binding capacity. This hetero-multivalency is probably mediated via a simple mechanism, Reduction of Dimensionality (RD). To understand the influence of RD, we also modeled LecA's two-step binding process with membranes using a kinetic Monte Carlo simulation. The simulation identified the frequency of low-affinity ligand encounters with bound LecA and the bound LecA's retention of the low-affinity ligand as essential parameters for triggering hetero-multivalent binding, agreeing with experimental observations. The hetero-multivalency can alter lectin binding properties, including avidities, capacities, and kinetics, and therefore, it likely occurs in various multivalent binding systems. Using hetero-multivalency concept, we also offered a new strategy to design high-affinity drug carriers for targeted drug delivery.


Subject(s)
Adhesins, Bacterial/chemistry , Adhesins, Bacterial/metabolism , Liposomes/metabolism , Pseudomonas aeruginosa , Kinetics , Ligands , Monte Carlo Method , Protein Binding
7.
Colloids Surf B Biointerfaces ; 160: 281-288, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28946063

ABSTRACT

GM1 has generally been considered as the major receptor that binds to cholera toxin subunit B (CTB) due to its low dissociation constant. However, using a unique nanocube sensor technology, we have shown that CTB can also bind to other glycolipid receptors, fucosyl-GM1 and GD1b. Additionally, we have demonstrated that GM2 can contribute to CTB binding if present in a glycolipid mixture with a strongly binding receptor (GM1/fucosyl-GM1/GD1b). This hetero-multivalent binding result was unintuitive because the interaction between CTB and pure GM2 is negligible. We hypothesized that the reduced dimensionality of CTB-GM2 binding events is a major cause of the observed CTB binding enhancement. Once CTB has attached to a strong receptor, subsequent binding events are confined to a 2D membrane surface. Therefore, even a weak GM2 receptor could now participate in second or higher binding events because its surface reaction rate can be up to 104 times higher than the bulk reaction rate. To test this hypothesis, we altered the surface reaction rate by modulating the fluidity and heterogeneity of the model membrane. Decreasing membrane fluidity reduced the binding cooperativity between GM2 and a strong receptor. Our findings indicated a new protein-receptor binding assay, that can mimic complex cell membrane environment more accurately, is required to explore the inherent hetero-multivalency of the cell membrane. We have thus developed a new membrane perturbation protocol to efficiently screen receptor candidates involved in hetero-multivalent protein binding.


Subject(s)
Cholera Toxin/chemistry , G(M1) Ganglioside/chemistry , G(M2) Ganglioside/chemistry , Lipid Bilayers/chemistry , Binding Sites , Carbohydrate Sequence , Cell Membrane/chemistry , Cholera Toxin/metabolism , Dimyristoylphosphatidylcholine/chemistry , Dimyristoylphosphatidylcholine/metabolism , G(M1) Ganglioside/metabolism , G(M2) Ganglioside/metabolism , Kinetics , Lipid Bilayers/metabolism , Metal Nanoparticles/chemistry , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Phosphatidylserines/chemistry , Phosphatidylserines/metabolism , Protein Binding , Silicon Dioxide/chemistry , Thermodynamics , Unithiol/chemistry , Unithiol/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...