Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Clin Cancer Res ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551501

ABSTRACT

PURPOSE: Medulloblastoma (MB), the most common childhood malignant brain tumor, has a poor prognosis in about 30% of patients. The current standard of care, which includes surgery, radiation and chemotherapy, is often responsible for cognitive, neurologic and endocrine side effects. We investigated whether chimeric antigen receptor (CAR) T-cells directed towards the disialoganglioside GD2 can represent a potentially more effective treatment with reduced long-term side effects. EXPERIMENTAL DESIGN: GD2 expression was evaluated on primary tumor biopsies of MB children by flow-cytometry. GD2 expression in MB cells was evaluated also in response to an EZH2 inhibitor (Tazemetostat). In in vitro, as well as in in vivo models, GD2+MB cells were targeted by a CAR-GD2.CD28.4-1BBζ (CAR.GD2)-T construct, including the suicide gene inducible-caspase-9. RESULTS: GD2 was expressed in 73.17% of MB tumors. The SHH and G4 subtypes expressed the highest levels of GD2, while the WNT subtype the lowest. In in-vitro co-culture assays, CAR.GD2 T-cells were able to kill GD2+MB cells. Pre-treatment with Tazemetostat upregulated GD2 expression, sensitizing GD2dimMB cells to CAR.GD2 T-cells cytotoxic activity. In orthotopic mouse models of MB, intravenously injected CAR.GD2 T-cells significantly controlled tumor growth, prolonging overall survival of treated mice. Moreover, the dimerizing drug AP1903 was able to cross the murine blood brain barrier and to eliminate both blood circulating and tumor infiltrating CAR.GD2 T-cells. CONCLUSIONS: Our experimental data indicate the feasibility of CAR.GD2 T-cell therapy. A phase I/II clinical trial will be conducted to evaluate the safety and therapeutic efficacy of CAR.GD2 therapy in high-risk MB patients.

2.
Nat Commun ; 14(1): 3423, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37296093

ABSTRACT

Chimeric antigen receptor T (CAR-T) cell therapy may achieve long-lasting remission in patients with B-cell malignancies not responding to conventional therapies. However, potentially severe and hard-to-manage side effects, including cytokine release syndrome (CRS), neurotoxicity and macrophage activation syndrome, and the lack of pathophysiological experimental models limit the applicability and development of this form of therapy. Here we present a comprehensive humanized mouse model, by which we show that IFNγ neutralization by the clinically approved monoclonal antibody, emapalumab, mitigates severe toxicity related to CAR-T cell therapy. We demonstrate that emapalumab reduces the pro-inflammatory environment in the model, thus allowing control of severe CRS and preventing brain damage, characterized by multifocal hemorrhages. Importantly, our in vitro and in vivo experiments show that IFNγ inhibition does not affect the ability of CD19-targeting CAR-T (CAR.CD19-T) cells to eradicate CD19+ lymphoma cells. Thus, our study provides evidence that anti-IFNγ treatment might reduce immune related adverse effect without compromising therapeutic success and provides rationale for an emapalumab-CAR.CD19-T cell combination therapy in humans.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Mice , Animals , Humans , Immunotherapy, Adoptive/adverse effects , B-Lymphocytes , Interferon-gamma , Neoplasms/etiology , Cytokine Release Syndrome , Antigens, CD19 , Cell- and Tissue-Based Therapy
3.
Front Immunol ; 14: 1194225, 2023.
Article in English | MEDLINE | ID: mdl-37304298

ABSTRACT

Introduction: Assessing the response to vaccinations is one of the diagnostic criteria for Common Variable Immune Deficiencies (CVIDs). Vaccination against SARS-CoV-2 offered the unique opportunity to analyze the immune response to a novel antigen. We identify four CVIDs phenotype clusters by the integration of immune parameters after BTN162b2 boosters. Methods: We performed a longitudinal study on 47 CVIDs patients who received the 3rd and 4th vaccine dose of the BNT162b2 vaccine measuring the generation of immunological memory. We analyzed specific and neutralizing antibodies, spike-specific memory B cells, and functional T cells. Results: We found that, depending on the readout of vaccine efficacy, the frequency of responders changes. Although 63.8% of the patients have specific antibodies in the serum, only 30% have high-affinity specific memory B cells and generate recall responses. Discussion: Thanks to the integration of our data, we identified four functional groups of CVIDs patients with different B cell phenotypes, T cell functions, and clinical diseases. The presence of antibodies alone is not sufficient to demonstrate the establishment of immune memory and the measurement of the in-vivo response to vaccination distinguishes patients with different immunological defects and clinical diseases.


Subject(s)
COVID-19 , Common Variable Immunodeficiency , Humans , BNT162 Vaccine , Longitudinal Studies , SARS-CoV-2 , Antibodies, Neutralizing , Phenotype
4.
Blood ; 142(2): 146-157, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37172203

ABSTRACT

Autologous CD19-directed chimeric antigen receptor (CAR)-T cells have shown unprecedented efficacy in children with relapsed/refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, patients either relapsing after allogeneic hematopoietic stem cell transplantation (allo-HSCT) or displaying profound lymphopenia and/or rapidly progressing disease often cannot access autologous products. These hurdles may be overcome by allogeneic, donor-derived CAR-T cells. We tested donor-derived T cells transduced with a second-generation (4.1BB) CD19-directed CAR for treatment of patients with BCP-ALL in a hospital-exemption setting. Two constructs were tested: a retroviral construct incorporating the suicide gene inducible caspase-9 (CD19-CAR-Retro_ALLO) first and then a lentiviral construct and an automated, Prodigy-based manufacturing process (CD19-CAR-Lenti_ALLO). Thirteen children/young adults received ALLO-CAR-T cells between March 2021 and October 2022. Doses ranged between 1.0 × 106 and 3.0 × 106 CAR-T cells per kg. The toxicity profile was comparable with that of autologous CAR-T cells, characterized mainly by cytopenia, cytokine release syndrome (maximum grade 1), and grade 2 immune-effector cell-associated neurotoxicity syndrome. One case of acute graft-versus-host disease (GVHD) occurred and was rapidly controlled with steroids and ruxolitinib. None of the other patients, including 3 given ALLO-CAR-T cells from an HLA-haploidentical donor, experienced GVHD. Two patients received ALLO-CAR-T cells before HSCT and showed a significant expansion of CAR-T cells without any sign of GVHD. All patients obtained complete remission (CR) with absence of minimal residual disease in the bone marrow. With a median follow-up of 12 months (range, 5-21), 8 of 13 patients maintained CR. Allogeneic anti-CD19 CAR-T cells can effectively treat highly refractory BCP-ALL relapsing after allo-HSCT without showing increased toxicity as compared with autologous CAR-T cells.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Young Adult , Humans , Child , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , T-Lymphocytes , Graft vs Host Disease/etiology , Immunotherapy, Adoptive/adverse effects , Antigens, CD19
5.
N Engl J Med ; 388(14): 1284-1295, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37018492

ABSTRACT

BACKGROUND: Immunotherapy with chimeric antigen receptor (CAR)-expressing T cells that target the disialoganglioside GD2 expressed on tumor cells may be a therapeutic option for patients with high-risk neuroblastoma. METHODS: In an academic, phase 1-2 clinical trial, we enrolled patients (1 to 25 years of age) with relapsed or refractory, high-risk neuroblastoma in order to test autologous, third-generation GD2-CAR T cells expressing the inducible caspase 9 suicide gene (GD2-CART01). RESULTS: A total of 27 children with heavily pretreated neuroblastoma (12 with refractory disease, 14 with relapsed disease, and 1 with a complete response at the end of first-line therapy) were enrolled and received GD2-CART01. No failure to generate GD2-CART01 was observed. Three dose levels were tested (3-, 6-, and 10×106 CAR-positive T cells per kilogram of body weight) in the phase 1 portion of the trial, and no dose-limiting toxic effects were recorded; the recommended dose for the phase 2 portion of the trial was 10×106 CAR-positive T cells per kilogram. Cytokine release syndrome occurred in 20 of 27 patients (74%) and was mild in 19 of 20 (95%). In 1 patient, the suicide gene was activated, with rapid elimination of GD2-CART01. GD2-targeted CAR T cells expanded in vivo and were detectable in peripheral blood in 26 of 27 patients up to 30 months after infusion (median persistence, 3 months; range, 1 to 30). Seventeen children had a response to the treatment (overall response, 63%); 9 patients had a complete response, and 8 had a partial response. Among the patients who received the recommended dose, the 3-year overall survival and event-free survival were 60% and 36%, respectively. CONCLUSIONS: The use of GD2-CART01 was feasible and safe in treating high-risk neuroblastoma. Treatment-related toxic effects developed, and the activation of the suicide gene controlled side effects. GD2-CART01 may have a sustained antitumor effect. (Funded by the Italian Medicines Agency and others; ClinicalTrials.gov number, NCT03373097.).


Subject(s)
Immunotherapy, Adoptive , Neuroblastoma , Receptors, Chimeric Antigen , Child , Humans , Caspase 9/adverse effects , Caspase 9/genetics , Caspase 9/metabolism , Caspase 9/therapeutic use , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/therapy , Neuroblastoma/genetics , Neuroblastoma/therapy , Receptors, Chimeric Antigen/therapeutic use
6.
J Hematol Oncol ; 15(1): 163, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36335396

ABSTRACT

BACKGROUND: Paediatric acute myeloid leukaemia (AML) is characterized by poor outcomes in patients with relapsed/refractory disease, despite the improvements in intensive standard therapy. The leukaemic cells of paediatric AML patients show high expression of the CD123 antigen, and this finding provides the biological basis to target CD123 with the chimeric antigen receptor (CAR). However, CAR.CD123 therapy in AML is hampered by on-target off-tumour toxicity and a long "vein-to-vein" time. METHODS: We developed an off-the-shelf product based on allogeneic natural killer (NK) cells derived from the peripheral blood of healthy donors and engineered them to express a second-generation CAR targeting CD123 (CAR.CD123). RESULTS: CAR.CD123-NK cells showed significant anti-leukaemia activity not only in vitro against CD123+ AML cell lines and CD123+ primary blasts but also in two animal models of human AML-bearing immune-deficient mice. Data on anti-leukaemia activity were also corroborated by the quantification of inflammatory cytokines, namely granzyme B (Granz B), interferon gamma (IFN-γ) and tumour necrosis factor alpha (TNF-α), both in vitro and in the plasma of mice treated with CAR.CD123-NK cells. To evaluate and compare the on-target off-tumour effects of CAR.CD123-T and NK cells, we engrafted human haematopoietic cells (hHCs) in an immune-deficient mouse model. All mice infused with CAR.CD123-T cells died by Day 5, developing toxicity against primary human bone marrow (BM) cells with a decreased number of total hCD45+ cells and, in particular, of hCD34+CD38- stem cells. In contrast, treatment with CAR.CD123-NK cells was not associated with toxicity, and all mice were alive at the end of the experiments. Finally, in a mouse model engrafted with human endothelial tissues, we demonstrated that CAR.CD123-NK cells were characterized by negligible endothelial toxicity when compared to CAR.CD123-T cells. CONCLUSIONS: Our data indicate the feasibility of an innovative off-the-shelf therapeutic strategy based on CAR.CD123-NK cells, characterized by remarkable efficacy and an improved safety profile compared to CAR.CD123-T cells. These findings open a novel intriguing scenario not only for the treatment of refractory/resistant AML patients but also to further investigate the use of CAR-NK cells in other cancers characterized by highly difficult targeting with the most conventional T effector cells.


Subject(s)
Leukemia, Myeloid, Acute , Receptors, Chimeric Antigen , Child , Humans , Mice , Animals , Interleukin-3 Receptor alpha Subunit , Receptors, Chimeric Antigen/therapeutic use , Receptors, Chimeric Antigen/metabolism , Leukemia, Myeloid, Acute/pathology , Immunotherapy, Adoptive/adverse effects , Killer Cells, Natural , Cell Line, Tumor
7.
Cells ; 11(12)2022 06 14.
Article in English | MEDLINE | ID: mdl-35741048

ABSTRACT

Following the third booster dose of the mRNA vaccine, Common Variable Immune Deficiencies (CVID) patients may not produce specific antibodies against the virus spike protein. The T-cell abnormalities associated with the absence of antibodies are still a matter of investigation. Spike-specific IgG and IgA, peripheral T cell subsets, CD40L and cytokine expression, and Spike-specific specific T-cells responses were evaluated in 47 CVID and 26 healthy donors after three doses of BNT162b2 vaccine. Testing was performed two weeks after the third vaccine dose. Thirty-six percent of the patients did not produce anti-SARS-CoV-2 IgG or IgA antibodies. Non responder patients had lower peripheral blood lymphocyte counts, circulating naïve and central memory T-cells, low CD40L expression on the CD4+CD45+RO+ and CD8+CD45+RO+ T-cells, high frequencies of TNFα and IFNγ expressing CD8+ T-cells, and defective release of IFNγ and TNFα following stimulation with Spike peptides. Non responders had a more complex disease phenotype, with higher frequencies of structural lung damage and autoimmunity, especially autoimmune cytopenia. Thirty-five percent of them developed a SARS-CoV-2 infection after immunization in comparison to twenty percent of CVID who responded to immunization with antibodies production. CVID-associated T cell abnormalities contributed to the absence of SARS-CoV-2 specific antibodies after full immunization.


Subject(s)
BNT162 Vaccine , COVID-19 , Antibodies, Viral , CD40 Ligand , COVID-19/prevention & control , Humans , Immunization , Immunoglobulin A , Immunoglobulin G , SARS-CoV-2 , Tumor Necrosis Factor-alpha , Vaccines, Synthetic , mRNA Vaccines
8.
J Natl Cancer Inst ; 114(3): 436-445, 2022 03 08.
Article in English | MEDLINE | ID: mdl-34581788

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T cells directed against CD19 (CART19) are effective in B-cell malignancies, but little is known about the molecular factors predicting clinical outcome of CART19 therapy. The increasingly recognized relevance of epigenetic changes in cancer immunology prompted us to determine the impact of the DNA methylation profiles of CART19 cells on the clinical course. METHODS: We recruited 114 patients with B-cell malignancies, comprising 77 patients with acute lymphoblastic leukemia and 37 patients with non-Hodgkin lymphoma who were treated with CART19 cells. Using a comprehensive DNA methylation microarray, we determined the epigenomic changes that occur in the patient T cells upon transduction of the CAR vector. The effects of the identified DNA methylation sites on clinical response, cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, event-free survival, and overall survival were assessed. All statistical tests were 2-sided. RESULTS: We identified 984 genomic sites with differential DNA methylation between CAR-untransduced and CAR-transduced T cells before infusion into the patient. Eighteen of these distinct epigenetic loci were associated with complete response (CR), adjusting by multiple testing. Using the sites linked to CR, an epigenetic signature, referred to hereafter as the EPICART signature, was established in the initial discovery cohort (n = 79), which was associated with CR (Fisher exact test, P < .001) and enhanced event-free survival (hazard ratio [HR] = 0.36; 95% confidence interval [CI] = 0.19 to 0.70; P = .002; log-rank P = .003) and overall survival (HR = 0.45; 95% CI = 0.20 to 0.99; P = .047; log-rank P = .04;). Most important, the EPICART profile maintained its clinical course predictive value in the validation cohort (n = 35), where it was associated with CR (Fisher exact test, P < .001) and enhanced overall survival (HR = 0.31; 95% CI = 0.11 to 0.84; P = .02; log-rank P = .02). CONCLUSIONS: We show that the DNA methylation landscape of patient CART19 cells influences the efficacy of the cellular immunotherapy treatment in patients with B-cell malignancy.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Antigens, CD19 , Cell- and Tissue-Based Therapy , Epigenesis, Genetic , Humans , Immunotherapy, Adoptive/adverse effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptors, Antigen, T-Cell/genetics
9.
J Hematol Oncol ; 14(1): 191, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34772439

ABSTRACT

The outcome of patients affected by high-risk or metastatic neuroblastoma (NB) remains grim, with ≥ 50% of the children experiencing relapse or progression of the disease despite multimodal, intensive treatment. In order to identify new strategies to improve the overall survival and the quality of life of these children, we recently developed and optimized a third-generation GD2-specific chimeric antigen receptor (CAR) construct, which is currently under evaluation in our Institution in a phase I/II clinical trial (NCT03373097) enrolling patients with relapsed/refractory NB. We observed that our CAR T-cells are able to induce marked tumor reduction and even achieve complete remission with a higher efficiency than that of other CAR T-cells reported in previous studies. However, often responses are not sustained and relapses occur. Here, we demonstrate for the first time a mechanism of resistance to GD2.CAR T-cell treatment, showing how polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) increase in the peripheral blood (PB) of NB patients after GD2.CAR T-cell treatment in case of relapse and loss of response. In vitro, isolated PMN-MDSC demonstrate to inhibit the anti-tumor cytotoxicity of different generations of GD2.CAR T-cells. Gene-expression profiling of GD2.CAR T-cells "conditioned" with PMN-MDSC shows downregulation of genes involved in cell activation, signal transduction, inflammation and cytokine/chemokine secretion. Analysis of NB gene-expression dataset confirms a correlation between expression of these genes and patient outcome. Moreover, in patients treated with GD2.CAR T-cells, the frequency of circulating PMN-MDSC inversely correlates with the levels of GD2.CAR T-cells, resulting more elevated in patients who did not respond or lost response to the treatment. The presence and the frequency of PMN-MDSC in PB of high-risk and metastatic NB represents a useful prognostic marker to predict the response to GD2.CAR T-cells and other adoptive immunotherapy. This study underlines the importance of further optimization of both CAR T-cells and clinical trial in order to target elements of the tumor microenvironment.


Subject(s)
Immunotherapy, Adoptive , Myeloid-Derived Suppressor Cells/immunology , Neuroblastoma/therapy , Humans , Immunotherapy, Adoptive/methods , Myeloid-Derived Suppressor Cells/pathology , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/pathology , Neuroblastoma/immunology , Neuroblastoma/pathology , Treatment Outcome
10.
Front Immunol ; 12: 755639, 2021.
Article in English | MEDLINE | ID: mdl-34737753

ABSTRACT

T cells engineered with chimeric antigen receptor (CAR-T cells) are an effective treatment in patients with relapsed/refractory B-cell precursor acute lymphoblastic leukemia or B-cell non-Hodgkin lymphoma. Despite the reported exciting clinical results, the CAR-T cell approach needs efforts to improve the safety profile, limiting the occurrence of adverse events in patients given this treatment. Besides the most common side effects, such as cytokine release syndrome and CAR-T cell-related encephalopathy syndrome, another potential issue involves the inadvertent transduction of leukemia B cells with the CAR construct during the manufacturing process, thus leading to the possibility of a peculiar mechanism of antigen masking and treatment resistance. In this study, we investigated whether the inclusion of the inducible caspase 9 (iC9) suicide gene in the CAR construct design could be an effective safety switch to control malignant CAR+ B cells, ultimately counteracting this serious adverse event. iC9 is a suicide gene able to be activated through binding with an otherwise inert small biomolecule, known as AP1903. The exposure of iC9.CAR.CD19-DAUDI lymphoma and iC9.CAR.CD19-NALM-6 leukemia cells in vitro to 20 nM of AP1903 resulted into the prompt elimination of CAR+ B-leukemia/lymphoma cell lines. The results obtained in the animal model corroborate in vitro data, since iC9.CAR.CD19+ tumor cells were controlled in vivo by the activation of the suicide gene through administration of AP1903. Altogether, our data indicate that the inclusion of the iC9 suicide gene may result in a safe CAR-T cell product, even when manufacturing starts from biological materials characterized by heavy leukemia blast contamination.


Subject(s)
Caspase 9 , Genes, Transgenic, Suicide , Immunotherapy, Adoptive/methods , Leukemia, B-Cell , Lymphoma, B-Cell , Receptors, Chimeric Antigen/therapeutic use , Animals , Cell Line, Tumor , Humans , Mice
11.
J Immunother Cancer ; 9(6)2021 06.
Article in English | MEDLINE | ID: mdl-34135100

ABSTRACT

Chimeric antigen receptor T-cells (CAR T-cells) for the treatment of relapsing/refractory B-cell precursor acute lymphoblastic leukemia have led to exciting clinical results. However, CAR T-cell approaches revealed a potential risk of CD19-/CAR+ leukemic relapse due to inadvertent transduction of leukemia cells. BACKGROUND: METHODS: We evaluated the impact of a high percentage of leukemia blast contamination in patient-derived starting material (SM) on CAR T-cell drug product (DP) manufacturing. In vitro as well as in vivo models were employed to identify characteristics of the construct associated with better profile of safety in case of inadvertent B-cell leukemia transduction during CAR T-cell manufacturing. RESULTS: The presence of large amounts of CD19+ cells in SM did not affect the transduction level of DPs, as well as the CAR T-cell rate of expansion at the end of standard production of 14 days. DPs were deeply characterized by flow cytometry and molecular biology for Ig-rearrangements, showing that the level of B-cell contamination in DPs did not correlate with the percentage of CD19+ cells in SM, in the studied patient cohort. Moreover, we investigated whether CAR design may affect the control of CAR+ leukemia cells. We provided evidences that CAR.CD19 short linker (SL) prevents complete epitope masking in CD19+CAR+ leukemia cells and we demonstrated in vitro and in vivo that CD19 +CAR(SL)+leukemic cells are killed by CAR.CD19 T-cells. CONCLUSIONS: Taken together, these data suggest that a VL-VH SL may result in a safe CAR-T product, even when manufacturing starts from biological materials characterized by heavy contamination of leukemia blasts.


Subject(s)
Epitopes/immunology , Leukemia, B-Cell/immunology , Receptors, Chimeric Antigen/immunology , Animals , Cell Line, Tumor , Disease Models, Animal , Humans , Mice
12.
Haematologica ; 106(4): 987-999, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32381575

ABSTRACT

The prognosis of many patients with chemotherapy-refractory or multiply relapsed CD30+ non-Hodgkin Lymphoma (NHL) or Hodgkin lymphoma (HL) still remains poor, and novel therapeutic approaches are warranted to address this unmet clinical need. In light of this consideration, we designed and pre-clinically validated a Chimeric Antigen Receptor (CAR) construct characterized by a novel anti-CD30 single-chain variable-fragment cassette, linked to CD3ζ by the signaling domains of two costimulatory molecules, namely either CD28.4-1BB or CD28.OX40. We found that CAR.CD30 T-cells exhibit remarkable cytolytic activity in vitro against HL and NHL cell lines, with sustained proliferation and pro-inflammatory cytokine production, even after multiple and sequential lymphoma cell challenges. CAR.CD30 T-cells also demonstrated anti-lymphoma activity in two in vivo xenograft immune-deficient mouse models of metastatic HL and NHL. We observed that administration of CAR.CD30 T-cells, incorporating the CD28.OX40 costimulatory domains and manufactured in the presence of IL7 and IL15, were associated with the best overall survival in the treated mice, along with the establishment of a long-term immunological memory, able to protect mice from further tumor re-challenge. Our data indicate that, in the context of in vivo systemic metastatic xenograft mouse models, the costimulatory machinery of CD28.OX40 is crucial for improving persistence, in vivo expansion and proliferation of CAR.CD30 T-cells upon tumor encounter. CD28.OX40 costimulatory combination is ultimately responsible for the antitumor efficacy of the approach, paving the way to translate this therapeutic strategy in patients with CD30+ HL and NHL.


Subject(s)
CD28 Antigens , Receptors, Chimeric Antigen , Animals , Humans , Immunotherapy, Adoptive , Mice , Receptors, Antigen, T-Cell , T-Lymphocytes
14.
Front Immunol ; 11: 699, 2020.
Article in English | MEDLINE | ID: mdl-32477328

ABSTRACT

TcRαß/CD19-cell depleted HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) represents a promising new platform for children affected by acute leukemia in need of an allograft and lacking a matched donor, disease recurrence being the main cause of treatment failure. The use of zoledronic acid to enhance TcRγδ+ lymphocyte function after TcRαß/CD19-cell depleted haplo-HSCT was tested in an open-label, feasibility, proof-of-principle study. Forty-six children affected by high-risk acute leukemia underwent haplo-HSCT after removal of TcRαß+ and CD19+ B lymphocytes. No post-transplant pharmacological graft-versus-host disease (GvHD) prophylaxis was given. Zoledronic acid was administered monthly at a dose of 0.05 mg/kg/dose (maximum dose 4 mg), starting from day +20 after transplantation. A total of 139 infusions were administered, with a mean of 3 infusions per patient. No severe adverse event was observed. Common side effects were represented by asymptomatic hypocalcemia and acute phase reactions (including fever, chills, malaise, and/or arthralgia) within 24-48 h from zoledronic acid infusion. The cumulative incidence of acute and chronic GvHD was 17.3% (all grade I-II) and 4.8% (all limited), respectively. Patients given 3 or more infusions of zoledronic acid had a lower incidence of both acute GvHD (8.8 vs. 41.6%, p = 0.015) and chronic GvHD (0 vs. 22.2%, p = 0.006). Transplant-related mortality (TRM) and relapse incidence at 3 years were 4.3 and 30.4%, respectively. Patients receiving repeated infusions of zoledronic acid had a lower TRM as compared to those receiving 1 or 2 administration of the drug (0 vs. 16.7%, p = 0.01). Five-year overall survival (OS) and disease-free survival (DFS) for the whole cohort were 67.2 and 65.2%, respectively, with a trend toward a better OS for patients receiving 3 or more infusions (73.1 vs. 50.0%, p = 0.05). The probability of GvHD/relapse-free survival was significantly worse in patients receiving 1-2 infusions of zoledonic acid than in those given ≥3 infusions (33.3 vs. 70.6%, respectively, p = 0.006). Multivariable analysis showed an independent positive effect on outcome given by repeated infusions of zoledronic acid (HR 0.27, p = 0.03). These data indicate that the use of zoledronic acid after TcRαß/CD19-cell depleted haploHSCT is safe and may result in a lower incidence of acute GvHD, chronic GvHD, and TRM.


Subject(s)
Antigens, CD19/immunology , Hematopoietic Stem Cell Transplantation/methods , Immunologic Factors/administration & dosage , Leukemia, Myeloid, Acute/therapy , Lymphocyte Depletion/methods , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/drug effects , Transplantation Conditioning/methods , Transplantation, Haploidentical/methods , Zoledronic Acid/administration & dosage , Adolescent , B-Lymphocytes/immunology , Child , Child, Preschool , Cohort Studies , Disease-Free Survival , Feasibility Studies , Female , Graft vs Host Disease/immunology , Graft vs Host Disease/prevention & control , Humans , Immunologic Factors/adverse effects , Infant , Male , T-Lymphocytes/immunology , Transplantation, Homologous/methods , Young Adult , Zoledronic Acid/adverse effects
15.
J Immunol Res ; 2020: 1938704, 2020.
Article in English | MEDLINE | ID: mdl-32322591

ABSTRACT

BACKGROUND: Personalised medicine in oncology needs standardised immunological assays. Flow cytometry (FCM) methods represent an essential tool for immunomonitoring, and their harmonisation is crucial to obtain comparable data in multicentre clinical trials. The objective of this study was to design a harmonisation workflow able to address the most effective issues contributing to intra- and interoperator variabilities in a multicentre project. METHODS: The Italian National Institute of Health (Istituto Superiore di Sanità, ISS) managed a multiparametric flow cytometric panel harmonisation among thirteen operators belonging to five clinical and research centres of Lazio region (Italy). The panel was based on a backbone mixture of dried antibodies (anti-CD3, anti-CD4, anti-CD8, anti-CD45RA, and anti-CCR7) to detect naïve/memory T cells, recognised as potential prognostic/predictive immunological biomarkers in cancer immunotherapies. The coordinating centre distributed frozen peripheral blood mononuclear cells (PBMCs) and fresh whole blood (WB) samples from healthy donors, reagents, and Standard Operating Procedures (SOPs) to participants who performed experiments by their own equipment, in order to mimic a real-life scenario. Operators returned raw and locally analysed data to ISS for central analysis and statistical elaboration. RESULTS: Harmonised and reproducible results were obtained by sharing experimental set-up and procedures along with centralising data analysis, leading to a reduction of cross-centre variability for naïve/memory subset frequencies particularly in the whole blood setting. CONCLUSION: Our experimental and analytical working process proved to be suitable for the harmonisation of FCM assays in a multicentre setting, where high-quality data are required to evaluate potential immunological markers, which may contribute to select better therapeutic options.


Subject(s)
Flow Cytometry/standards , Immunophenotyping/standards , T-Lymphocyte Subsets/classification , Biomarkers/blood , CD3 Complex/blood , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Color/standards , Flow Cytometry/methods , Humans , Immunologic Memory , Italy , Leukocyte Common Antigens/blood , Leukocytes, Mononuclear/immunology , Observer Variation , Receptors, CCR7/blood , T-Lymphocyte Subsets/immunology
16.
Oncoimmunology ; 7(6): e1433518, 2018.
Article in English | MEDLINE | ID: mdl-29872565

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy has been shown to be dramatically effective in the treatment of B-cell malignancies. However, there are still substantial obstacles to overcome, before similar responses can be achieved in patients with solid tumors. We evaluated both in vitro and in a preclinical murine model the efficacy of different 2nd and 3rd generation CAR constructs targeting GD2, a disial-ganglioside expressed on the surface of neuroblastoma (NB) tumor cells. In order to address potential safety concerns regarding clinical application, an inducible safety switch, namely inducible Caspase-9 (iC9), was also included in the vector constructs. Our data indicate that a 3rd generation CAR incorporating CD28.4-1BB costimulatory domains is associated with improved anti-tumor efficacy as compared with a CAR incorporating the combination of CD28.OX40 domains. We demonstrate that the choice of 4-1BB signaling results into significant amelioration of several CAR T-cell characteristics, including: 1) T-cell exhaustion, 2) basal T-cell activation, 3) in vivo tumor control and 4) T-cell persistence. The fine-tuning of T-cell culture conditions obtained using IL7 and IL15 was found to be synergic with the CAR.GD2 design in increasing the anti-tumor activity of CAR T cells. We also demonstrate that activation of the suicide gene iC9, included in our construct without significantly impairing neither CAR expression nor anti-tumor activity, leads to a prompt induction of apoptosis of GD2.CAR T cells. Altogether, these findings are instrumental in optimizing the function of CAR T-cell products to be employed in the treatment of children with NB.

17.
Cancer Res ; 78(12): 3337-3349, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29615432

ABSTRACT

Medulloblastoma is the most frequent malignant childhood brain tumor with a high morbidity. Identification of new therapeutic targets would be instrumental in improving patient outcomes. We evaluated the expression of the tumor-associated antigen PRAME in biopsies from 60 patients with medulloblastoma. PRAME expression was detectable in 82% of tissues independent of molecular and histopathologic subgroups. High PRAME expression also correlated with worse overall survival. We next investigated the relevance of PRAME as a target for immunotherapy. Medulloblastoma cells were targeted using genetically modified T cells with a PRAME-specific TCR (SLL TCR T cells). SLL TCR T cells efficiently killed medulloblastoma HLA-A*02+ DAOY cells as well as primary HLA-A*02+ medulloblastoma cells. Moreover, SLL TCR T cells controlled tumor growth in an orthotopic mouse model of medulloblastoma. To prevent unexpected T-cell-related toxicity, an inducible caspase-9 (iC9) gene was introduced in frame with the SLL TCR; this safety switch triggered prompt elimination of genetically modified T cells. Altogether, these data indicate that T cells genetically modified with a high-affinity, PRAME-specific TCR and iC9 may represent a promising innovative approach for treating patients with HLA-A*02+ medulloblastoma.Significance: These findings identify PRAME as a medulloblastoma tumor-associated antigen that can be targeted using genetically modified T cells. Cancer Res; 78(12); 3337-49. ©2018 AACR.


Subject(s)
Antigens, Neoplasm/immunology , Cerebellar Neoplasms/therapy , Immunotherapy, Adoptive/methods , Medulloblastoma/therapy , T-Lymphocytes/transplantation , Adolescent , Animals , Antigens, Neoplasm/metabolism , Caspase 9/genetics , Caspase 9/immunology , Cell Line, Tumor , Cerebellar Neoplasms/immunology , Cerebellar Neoplasms/pathology , Child , Child, Preschool , Coculture Techniques , Cohort Studies , Female , Genes, Transgenic, Suicide/genetics , Genes, Transgenic, Suicide/immunology , HLA-A2 Antigen/immunology , HLA-A2 Antigen/metabolism , Humans , Male , Medulloblastoma/immunology , Medulloblastoma/pathology , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Treatment Outcome , Xenograft Model Antitumor Assays
18.
Curr Hematol Malig Rep ; 12(1): 68-78, 2017 02.
Article in English | MEDLINE | ID: mdl-28116633

ABSTRACT

PURPOSE OF REVIEW: Hematopoietic stem cell transplantation (HSCT) is a treatment option for children with malignant and non-malignant disorders as well as an expanding number of inherited disorders. However, only a limited portion of patients in the need of an allograft have an HLA-compatible, either related or unrelated, donor. Haploidentical HSCT is now considered a valid treatment option, especially in view of the recent insights in terms of graft manipulation. This review will offer an overview of clinical results obtained through the use of haploidentical HSCT in non-malignant diseases. We will analyze major advantages and drawbacks of both T cell depleted and unmanipulated HSCT, discussing future challenges for further improving patients' outcome. RECENT FINDINGS: T cell depletion (TCD) aims to reduce the morbidity and mortality associated with graft-versus-host disease (GvHD). However, the delayed immune recovery and the risk of graft failure still remain potential problems. In the last years, the use of post-transplant cyclophosphamide has been shown to be an alternative effective strategy to prevent GvHD in recipients of haploidentical HSCT. Recent data suggest that both T cell depleted and T cell-replete haplo-HSCT are suitable options to treat children with several types of non-malignant disorders lacking an HLA-identical donor.


Subject(s)
HLA Antigens/immunology , Neoplasms/therapy , Stem Cell Transplantation , Graft vs Host Disease/prevention & control , Granulocyte Colony-Stimulating Factor/pharmacology , Humans , Lymphocyte Depletion , Stem Cell Transplantation/adverse effects , Stem Cells/drug effects , Stem Cells/immunology , Stem Cells/metabolism , T-Lymphocytes/immunology , Transplantation, Homologous
19.
Immunol Lett ; 152(2): 114-20, 2013 May.
Article in English | MEDLINE | ID: mdl-23660557

ABSTRACT

Immunological memory is our reservoir of ready-to-use antibodies and memory B cells. Because of immunological memory a secondary infection will be very light or not occur at all. Antibodies and cells, generated in the germinal center in response to the first encounter with antigen, are highly specific, remain in the organism virtually forever and are mostly of IgG isotype. Long lived plasma cells homing to the bone marrow ensure the constant production of protective antibodies, whereas switched memory B cells proliferate and differentiate in response to secondary challenge. IgM memory B cells represent our first-line defense against infections. They are generated by a T-cell independent mechanism probably triggered by Toll-like receptor-9. They produce natural antibodies with anti-bacterial specificity and the spleen is indispensable for their maintenance. We will review the characteristics and functions of IgM memory B cells that explain their importance in the immediate protection from pathogens. IgM memory B cells, similar to mouse B-1a B cells, may be a remnant of a primitive immune system that developed in the spleen of cartilaginous fish and persisted throughout evolution notwithstanding the sophisticated tools of the adaptive immune system.


Subject(s)
B-Lymphocytes/immunology , Immunoglobulin M/immunology , Immunologic Memory , Animals , Cell Differentiation/immunology , Cell Proliferation , Humans , Mice , Spleen/immunology , T-Lymphocytes/immunology , Toll-Like Receptor 9/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...