Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6461, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833253

ABSTRACT

The most prevalent genetic form of inherited arrhythmogenic cardiomyopathy (ACM) is caused by mutations in desmosomal plakophilin-2 (PKP2). By studying pathogenic deletion mutations in the desmosomal protein PKP2, here we identify a general mechanism by which PKP2 delocalization restricts actomyosin network organization and cardiac sarcomeric contraction in this untreatable disease. Computational modeling of PKP2 variants reveals that the carboxy-terminal (CT) domain is required for N-terminal domain stabilization, which determines PKP2 cortical localization and function. In mutant PKP2 cells the expression of the interacting protein MYH10 rescues actomyosin disorganization. Conversely, dominant-negative MYH10 mutant expression mimics the pathogenic CT-deletion PKP2 mutant causing actin network abnormalities and right ventricle systolic dysfunction. A chemical activator of non-muscle myosins, 4-hydroxyacetophenone (4-HAP), also restores normal contractility. Our findings demonstrate that activation of MYH10 corrects the deleterious effect of PKP2 mutant over systolic cardiac contraction, with potential implications for ACM therapy.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Humans , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/metabolism , Actomyosin/genetics , Mutation , Cardiomyopathies/genetics , Plakophilins/genetics , Plakophilins/metabolism
2.
ACS Appl Mater Interfaces ; 15(14): 17507-17517, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36995989

ABSTRACT

Deciphering the mechanism of Alzheimer's disease is a key element for designing an efficient therapeutic strategy. Molecular dynamics (MD) calculations, atomic force microscopy, and infrared spectroscopy were combined to investigate ß-amyloid (Aß1-42) peptide interactions with supported lipid bilayers (SLBs). The MD simulations showed that nascent Aß1-42 monomers remain anchored within a model phospholipid bilayer's hydrophobic core, which suggests their stability in their native environment. We tested this prediction experimentally by studying the behavior of Aß1-42 monomers and oligomers when interacting with SLBs. When Aß1-42 monomers and oligomers were self-assembled with a lipid bilayer and deposited as an SLB, they remain within the bilayers. Their presence in the bilayers induces destabilization of the model membranes. No specific interactions between Aß1-42 and the SLBs were detected when SLBs free of Aß1-42 were exposed to Aß1-42. This study suggests that Aß can remain in the membrane after cleavage by γ-secretase and cause severe damage to the membrane.


Subject(s)
Alzheimer Disease , Humans , Amyloid beta-Peptides/chemistry , Peptide Fragments/chemistry , Lipid Bilayers/chemistry
3.
Int J Pharm X ; 4: 100130, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36156982

ABSTRACT

Proteins are great therapeutic candidates as endogenous biomolecules providing a wide range of applications. However, their delivery suffers from some limitations and specifically designed delivery systems having an efficient protein anchoring and delivery strategy are still needed. In this work, we propose to combine large pore stellate mesoporous silica (STMS) with isobutyramide (IBAM), as a "glue" molecule which has been shown promising for immobilization of various biomacromolecules at silica surface. We address here for the first time the ability of such IBAM-modified NPs to sustainably deliver proteins over a prolonged time. In this work, a quantitative loading study of proteins (serum albumin (HSA), peroxidase (HRP), immunoglobulin (IgG) and polylysine (PLL)) on STMS@IBAM is first presented using three complementary detection techniques to ensure precision and avoid protein quantification issues. The results demonstrated a high loading capacity for HSA and HRP (≥ ca. 350 µg.mg-1) but a moderate one for IgG and PLL. After evaluating the physicochemical properties of the loaded particles and their stability over scaling-up and washings, the ability of STMS@IBAM to release proteins over prolonged time was evaluated in equilibrium (static) and flow mimicking (dynamic) conditions and at different temperatures (25, 37, 45 °C). Results show not only the potential of such "glue" functionalized STMS to release proteins in a sustained way, but also the retention of the biological activity of immobilized and released HRP, used as an enzyme model. Finally, an AFM-force spectroscopy study was conducted to decipher the interactions between IBAM and proteins, showing the involvement of different interactions in the adsorption and release processes.

4.
Nanoscale ; 14(7): 2735-2749, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35112689

ABSTRACT

Metal-based complexes are well-established cancer chemotherapeutic drug candidates. Although our knowledge regarding their exact activity vs. toxicity profile is incomplete, changes in cell membrane biophysical properties and cytoskeletal structures have been implicated as part of the mechanism of action. Thus, in this work, we characterised the effects of iron(II)-based complexes on the structural and morphological properties of epithelial non-tumorigenic (MCF 10A) and tumorigenic (MDA-MB-231) breast cell lines using atomic force microscopy (AFM), flow cytometry and immunofluorescence microscopy. At 24 h of exposure, both the MCF 10A and MDA-MB-231 cells experienced a cell softening, and an increase in size followed by a re-stiffening at 96 h. In addition, the triple negative breast cancer cell line, MDA-MB-231, sustained a notable cytoskeletal and mitochondrial reorganization with increased actin stress fibers and cell-to-cell communication structures. An extensive all-atom molecular dynamic simulation suggests a possible direct and unassisted internalization of the metallodrug candidate, and confirmed that the cellular effects could not be ascribed to the simple physical interaction of the iron-based complexes with the biological membrane. These observations provide an insight into a link between the mechanisms of action of such iron-based complexes as anti-cancer treatment and cytoskeletal architecture.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Triple Negative Breast Neoplasms , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis , Breast Neoplasms/drug therapy , Cell Line, Tumor , Female , Ferrous Compounds , Humans , Iron , MCF-7 Cells , Triple Negative Breast Neoplasms/drug therapy
5.
Carbohydr Polym ; 206: 48-56, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30553348

ABSTRACT

Flax retting is a major bioprocess in the cultivation and extraction cycle of flax fibres. The aim of the present study is to improve the understanding of the evolution of fibre properties and ultrastructure caused by this process at the plant cell wall scale. Initially, investigations of the mechanical performances of the flax cell walls by Atomic Force Microscopy (AFM) in Peak Force mode revealed a significant increase (+33%) in the cell wall indentation modulus with retting time. Two complementary structural studies are presented here, namely using X-Ray Diffraction (XRD) and solid state Nuclear Magnetic Resonance (NMR). An estimation of the cellulose crystallinity index by XRD measurements, confirmed by NMR, shows an increase of 8% in crystallinity with retting mainly due to the disappearance of amorphous polymer. In addition, NMR investigations show a compaction of inaccessible cell wall polymers, combined with an increase in the relaxation times of the C4 carbon. This densification provides a structural explanation for the observed improvement in mechanical performance of the secondary wall of flax fibres during the field retting process.

SELECTION OF CITATIONS
SEARCH DETAIL
...