Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Oncol ; 15(12): 3404-3429, 2021 12.
Article in English | MEDLINE | ID: mdl-34258881

ABSTRACT

Late-stage colorectal cancer (CRC) is still a clinically challenging problem. The activity of the tumor suppressor p53 is regulated via post-translational modifications (PTMs). While the relevance of p53 C-terminal acetylation for transcriptional regulation is well defined, it is unknown whether this PTM controls mitochondrially mediated apoptosis directly. We used wild-type p53 or p53-negative human CRC cells, cells with acetylation-defective p53, transformation assays, CRC organoids, and xenograft mouse models to assess how p53 acetylation determines cellular stress responses. The topoisomerase-1 inhibitor irinotecan induces acetylation of several lysine residues within p53. Inhibition of histone deacetylases (HDACs) with the class I HDAC inhibitor entinostat synergistically triggers mitochondrial damage and apoptosis in irinotecan-treated p53-positive CRC cells. This specifically relies on the C-terminal acetylation of p53 by CREB-binding protein/p300 and the presence of C-terminally acetylated p53 in complex with the proapoptotic BCL2 antagonist/killer protein. This control of C-terminal acetylation by HDACs can mechanistically explain why combinations of irinotecan and entinostat represent clinically tractable agents for the therapy of p53-proficient CRC.


Subject(s)
Colorectal Neoplasms , Tumor Suppressor Protein p53 , Acetylation , Animals , Apoptosis , Benzamides , Colorectal Neoplasms/drug therapy , Humans , Irinotecan/pharmacology , Mice , Pyridines , Tumor Suppressor Protein p53/metabolism
2.
Cell Biosci ; 11(1): 57, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33743824

ABSTRACT

INTRODUCTION: Ewing's sarcoma is an aggressive childhood malignancy whose outcome has not substantially improved over the last two decades. In this study, combination treatments of the HSP90 inhibitor AUY922 with either the ATR inhibitor VE821 or the ATM inhibitor KU55933 were investigated for their effectiveness in Ewing's sarcoma cells. METHODS: Effects were determined in p53 wild-type and p53 null Ewing's sarcoma cell lines by flow cytometric analyses of cell death, mitochondrial depolarization and cell-cycle distribution as well as fluorescence and transmission electron microscopy. They were molecularly characterized by gene and protein expression profiling, and by quantitative whole proteome analysis. RESULTS: AUY922 alone induced DNA damage, apoptosis and ER stress, while reducing the abundance of DNA repair proteins. The combination of AUY922 with VE821 led to strong apoptosis induction independent of the cellular p53 status, yet based on different molecular mechanisms. p53 wild-type cells activated pro-apoptotic gene transcription and underwent mitochondria-mediated apoptosis, while p53 null cells accumulated higher levels of DNA damage, ER stress and autophagy, eventually leading to apoptosis. Impaired PI3K/AKT/mTOR signaling further contributed to the antineoplastic combination effects of AUY922 and VE821. In contrast, the combination of AUY922 with KU55933 did not produce a cooperative effect. CONCLUSION: Our study reveals that HSP90 and ATR inhibitor combination treatment may be an effective therapeutic approach for Ewing's sarcoma irrespective of the p53 status.

3.
Nucleic Acids Res ; 48(19): 10924-10939, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33010171

ABSTRACT

NBS1 is a critical component of the MRN (MRE11/RAD50/NBS1) complex, which regulates ATM- and ATR-mediated DNA damage response (DDR) pathways. Mutations in NBS1 cause the human genomic instability syndrome Nijmegen Breakage Syndrome (NBS), of which neuronal deficits, including microcephaly and intellectual disability, are classical hallmarks. Given its function in the DDR to ensure proper proliferation and prevent death of replicating cells, NBS1 is essential for life. Here we show that, unexpectedly, Nbs1 deletion is dispensable for postmitotic neurons, but compromises their arborization and migration due to dysregulated Notch signaling. We find that Nbs1 interacts with NICD-RBPJ, the effector of Notch signaling, and inhibits Notch activity. Genetic ablation or pharmaceutical inhibition of Notch signaling rescues the maturation and migration defects of Nbs1-deficient neurons in vitro and in vivo. Upregulation of Notch by Nbs1 deletion is independent of the key DDR downstream effector p53 and inactivation of each MRN component produces a different pattern of Notch activity and distinct neuronal defects. These data indicate that neuronal defects and aberrant Notch activity in Nbs1-deficient cells are unlikely to be a direct consequence of loss of MRN-mediated DDR function. This study discloses a novel function of NBS1 in crosstalk with the Notch pathway in neuron development.


Subject(s)
Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Neurogenesis , Neurons/metabolism , Receptors, Notch/metabolism , Acid Anhydride Hydrolases/metabolism , Animals , Cells, Cultured , DNA Damage , DNA Repair , Embryo, Mammalian , Fibroblasts , MRE11 Homologue Protein/metabolism , Mice , Neurons/cytology
4.
Nucleic Acids Res ; 45(19): 11174-11192, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28977496

ABSTRACT

One of the fastest cellular responses to genotoxic stress is the formation of poly(ADP-ribose) polymers (PAR) by poly(ADP-ribose)polymerase 1 (PARP1, or ARTD1). PARP1 and its enzymatic product PAR regulate diverse biological processes, such as DNA repair, chromatin remodeling, transcription and cell death. However, the inter-dependent function of the PARP1 protein and its enzymatic activity clouds the mechanism underlying the biological response. We generated a PARP1 knock-in mouse model carrying a point mutation in the catalytic domain of PARP1 (D993A), which impairs the kinetics of the PARP1 activity and the PAR chain complexity in vitro and in vivo, designated as hypo-PARylation. PARP1D993A/D993A mice and cells are viable and show no obvious abnormalities. Despite a mild defect in base excision repair (BER), this hypo-PARylation compromises the DNA damage response during DNA replication, leading to cell death or senescence. Strikingly, PARP1D993A/D993A mice are hypersensitive to alkylation in vivo, phenocopying the phenotype of PARP1 knockout mice. Our study thus unravels a novel regulatory mechanism, which could not be revealed by classical loss-of-function studies, on how PAR homeostasis, but not the PARP1 protein, protects cells and organisms from acute DNA damage.


Subject(s)
DNA Damage , Mouse Embryonic Stem Cells/metabolism , Poly ADP Ribosylation , Poly(ADP-ribose) Polymerases/metabolism , Animals , Catalytic Domain/genetics , Cells, Cultured , DNA Repair , DNA Replication/genetics , Kinetics , Mice , Mice, 129 Strain , Mice, Transgenic , Models, Genetic , Mutation , Poly(ADP-ribose) Polymerases/genetics
5.
Semin Cell Dev Biol ; 63: 81-91, 2017 03.
Article in English | MEDLINE | ID: mdl-27664469

ABSTRACT

Despite more than 50 years of research, the vast majority of the biology of poly(ADP-ribosyl)ation (PARylation) still remains a gross mystery. Originally described to be a part of the DNA repair machinery, poly(ADP-ribose) (PAR) is synthesized immediately by poly(ADP-ribose) polymerases (PARPs, also known as ARTDs) upon DNA damage and then rapidly removed by degrading enzymes. PAR provides a delicate and spatiotemporal interaction scaffold for numerous target proteins. Thus, the multifaceted PARylation system, consisting of PAR itself and its synthesizers and erasers, plays diverse roles in the DNA damage response (DDR), in DNA repair, transcription, replication, chromatin remodelling, metabolism and cell death. In this review, we summarize the current understanding of the biology of PARylation, focusing on the functionality and the activities of the PARPs' founding member PARP1/ARTD1, which is modulated by a variety of posttranslational modifications. We also discuss the homeostasis of PAR - a process which is maintained by the balance of PAR synthesizers and erasers. We aim to sensitize the scientific community to the complexity of PAR homeostasis. Finally, we provide some perspective on how future research could try to disentangle the biology of PARylation - perhaps the most sophisticated, but still intricate posttranslational modification described to date.


Subject(s)
Homeostasis , Poly ADP Ribosylation , Poly(ADP-ribose) Polymerases/metabolism , Animals , DNA Damage , Disease , Humans , Protein Processing, Post-Translational
6.
Acta Microbiol Immunol Hung ; 60(4): 397-410, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24292084

ABSTRACT

INTRODUCTION: Meningococcal infections are major causes of death in children globally. In Belarus, the incidence of cases and fatality rate of meningococcal infections are low and comparable to the levels in other European countries. AIM: In the present study, the molecular and epidemiological traits of Neisseria meningitidis strains circulating in Belarus were characterized and compared to isolates from other European countries. MATERIALS AND METHODS: Twenty N. meningitidis strains isolated from patients (n = 13) and healthy contacts (n = 7) during 2006­2012 in Belarus were selected for multilocus sequence typing (MLST), genosubtyping and FetA typing. TheSTs of the Belarusian strains were phylogenetically compared to the STs of 110 selected strains from 22 other European countries. RESULTS: Overall, eleven different genosubtypes were observed, there were seven variants of variable region of the fet Agene detected. The majority of the STs (95%) found in Belarus were novel and allthose were submitted to the Neisseria MLST database for assignment. Several newly discovered alleles of fumC (allele 451) and gdh (allele 560 and 621) appeared to be descendants of alleles which are widespread in Europe, and single aroE alleles (602 and 603) occurred as a result of separate evolution. CONCLUSIONS: N. meningitidis strains circulating in Belarus are heterogeneous and include sequence types, possibly, locally evolved in Belarus as well as representatives of widespread European hyperinvasive clonal complexes.


Subject(s)
Evolution, Molecular , Neisseria meningitidis/genetics , Alleles , Humans , Multilocus Sequence Typing , Neisseria meningitidis/classification , Phylogeny , Polymorphism, Single Nucleotide , Republic of Belarus
SELECTION OF CITATIONS
SEARCH DETAIL
...