Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Cell Cardiol ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38734060

ABSTRACT

INTRODUCTION: Chronic immunopathology contributes to the development of heart failure after a myocardial infarction. Both T and B cells of the adaptive immune system are present in the myocardium and have been suggested to be involved in post-MI immunopathology. METHODS: We analysed the B and T cell populations isolated from previously published single cell sequencing data sets (PMID: 32130914, PMID: 35948637, PMID: 32971526 and PMID: 35926050), of the mouse and human heart, using differential expression analysis, functional enrichment analysis, gene regulatory inferences, and integration with autoimmune and cardiovascular GWAS. RESULTS: Already at baseline, mature effector B and T cells are present in the human and mouse heart, having increased activity in transcription factors maintaining tolerance (e.g. DEAF1, JDP2, SPI-B). Following MI, T cells upregulate pro-inflammatory transcript levels (e.g. Cd11, Gzmk, Prf1), while B cells upregulate activation markers (e.g. Il-6, Il1rn, Ccl6) and collagen (e.g. Col5a2, Col4a1, Col1a2). Importantly, pro-inflammatory and fibrotic transcription factors (e.g. NFKB1, CREM, REL) remain active in T cells, while B cells maintain elevated activity in transcription factors related to immunoglobulin production (e.g. ERG, REL) in both the mouse and human post-MI heart. Notably, genes differentially expressed in post-MI T and B cells are associated with cardiovascular and autoimmune disease. CONCLUSION: These findings highlight the varied and time-dependent dynamic roles of post-MI T and B cells. They appear ready-to-go and are activated immediately after MI, thus participate in the acute wound healing response. However, they subsequently remain in a state of pro-inflammatory activation contributing to persistent immunopathology.

2.
JAMA Netw Open ; 6(5): e2314291, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37200028

ABSTRACT

Importance: Cardiac dysfunction and myocarditis have emerged as serious complications of multisystem inflammatory syndrome in children (MIS-C) and vaccines against SARS-CoV-2. Understanding the role of autoantibodies in these conditions is essential for guiding MIS-C management and vaccination strategies in children. Objective: To investigate the presence of anticardiac autoantibodies in MIS-C or COVID-19 vaccine-induced myocarditis. Design, Setting, and Participants: This diagnostic study included children with acute MIS-C or acute vaccine myocarditis, adults with myocarditis or inflammatory cardiomyopathy, healthy children prior to the COVID-19 pandemic, and healthy COVID-19 vaccinated adults. Participants were recruited into research studies in the US, United Kingdom, and Austria starting January 2021. Immunoglobulin G (IgG), IgM, and IgA anticardiac autoantibodies were identified with immunofluorescence staining of left ventricular myocardial tissue from 2 human donors treated with sera from patients and controls. Secondary antibodies were fluorescein isothiocyanate-conjugated antihuman IgG, IgM, and IgA. Images were taken for detection of specific IgG, IgM, and IgA deposits and measurement of fluorescein isothiocyanate fluorescence intensity. Data were analyzed through March 10, 2023. Main Outcomes and Measures: IgG, IgM and IgA antibody binding to cardiac tissue. Results: By cohort, there were a total of 10 children with MIS-C (median [IQR] age, 10 [13-14] years; 6 male), 10 with vaccine myocarditis (median age, 15 [14-16] years; 10 male), 8 adults with myocarditis or inflammatory cardiomyopathy (median age, 55 [46-63] years; 6 male), 10 healthy pediatric controls (median age, 8 [13-14] years; 5 male), and 10 healthy vaccinated adults (all older than 21 years, 5 male). No antibody binding above background was observed in human cardiac tissue treated with sera from pediatric patients with MIS-C or vaccine myocarditis. One of the 8 adult patients with myocarditis or cardiomyopathy had positive IgG staining with raised fluorescence intensity (median [IQR] intensity, 11 060 [10 223-11 858] AU). There were no significant differences in median fluorescence intensity in all other patient cohorts compared with controls for IgG (MIS-C, 6033 [5834-6756] AU; vaccine myocarditis, 6392 [5710-6836] AU; adult myocarditis or inflammatory cardiomyopathy, 5688 [5277-5990] AU; healthy pediatric controls, 6235 [5924-6708] AU; healthy vaccinated adults, 7000 [6423-7739] AU), IgM (MIS-C, 3354 [3110-4043] AU; vaccine myocarditis, 3843 [3288-4748] AU; healthy pediatric controls, 3436 [3313-4237] AU; healthy vaccinated adults, 3543 [2997-4607] AU) and IgA (MIS-C, 3559 [2788-4466] AU; vaccine myocarditis, 4389 [2393-4780] AU; healthy pediatric controls, 3436 [2425-4077] AU; healthy vaccinated adults, 4561 [3164-6309] AU). Conclusions and Relevance: This etiological diagnostic study found no evidence of antibodies from MIS-C and COVID-19 vaccine myocarditis serum binding cardiac tissue, suggesting that the cardiac pathology in both conditions is unlikely to be driven by direct anticardiac antibody-mediated mechanisms.


Subject(s)
COVID-19 , Myocarditis , Adult , Humans , Male , Child , Adolescent , Middle Aged , Myocarditis/etiology , COVID-19 Vaccines/adverse effects , Autoantibodies , COVID-19/prevention & control , Pandemics , SARS-CoV-2 , Vaccination , Immunoglobulin G , Immunoglobulin A , Fluoresceins , Immunoglobulin M
3.
Circulation ; 143(8): 821-836, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33297741

ABSTRACT

BACKGROUND: Ischemic heart disease is a leading cause of heart failure and despite advanced therapeutic options, morbidity and mortality rates remain high. Although acute inflammation in response to myocardial cell death has been extensively studied, subsequent adaptive immune activity and anti-heart autoimmunity may also contribute to the development of heart failure. After ischemic injury to the myocardium, dendritic cells (DC) respond to cardiomyocyte necrosis, present cardiac antigen to T cells, and potentially initiate a persistent autoimmune response against the heart. Cross-priming DC have the ability to activate both CD4+ helper and CD8+ cytotoxic T cells in response to necrotic cells and may thus be crucial players in exacerbating autoimmunity targeting the heart. This study investigates a role for cross-priming DC in post-myocardial infarction immunopathology through presentation of self-antigen from necrotic cardiac cells to cytotoxic CD8+ T cells. METHODS: We induced type 2 myocardial infarction-like ischemic injury in the heart by treatment with a single high dose of the ß-adrenergic agonist isoproterenol. We characterized the DC population in the heart and mediastinal lymph nodes and analyzed long-term cardiac immunopathology and functional decline in wild type and Clec9a-depleted mice lacking DC cross-priming function. RESULTS: A diverse DC population, including cross-priming DC, is present in the heart and activated after ischemic injury. Clec9a-/- mice deficient in DC cross-priming are protected from persistent immune-mediated myocardial damage and decline of cardiac function, likely because of dampened activation of cytotoxic CD8+ T cells. CONCLUSION: Activation of cytotoxic CD8+ T cells by cross-priming DC contributes to exacerbation of postischemic inflammatory damage of the myocardium and corresponding decline in cardiac function. Importantly, this provides novel therapeutic targets to prevent postischemic immunopathology and heart failure.


Subject(s)
Cross-Priming , Dendritic Cells/immunology , Myocardium/pathology , Animals , Antigen Presentation , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Dendritic Cells/metabolism , Disease Models, Animal , Female , Heart Failure/pathology , Humans , Lectins, C-Type/deficiency , Lectins, C-Type/genetics , Lymph Nodes/immunology , Lymph Nodes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Myocardial Infarction/immunology , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardium/immunology , Myocardium/metabolism , Receptors, Chemokine/metabolism , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics
4.
Adv Mater ; 32(48): e2003598, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33103807

ABSTRACT

Uncontrolled inflammation is a major pathological factor underlying a range of diseases including autoimmune conditions, cardiovascular disease, and cancer. Improving localized delivery of immunosuppressive drugs to inflamed tissue in a non-invasive manner offers significant promise to reduce severe side effects caused by systemic administration. Here, a neutrophil-mediated delivery system able to transport drug-loaded nanocarriers to inflamed tissue by exploiting the inherent ability of neutrophils to migrate to inflammatory tissue is reported. This hybrid system (neutrophils loaded with liposomes ex vivo) efficiently migrates in vitro following an inflammatory chemokine gradient. Furthermore, the triggered release of loaded liposomes and reuptake by target macrophages is studied. The migratory behavior of liposome-loaded neutrophils is confirmed in vivo by demonstrating the delivery of drug-loaded liposomes to an inflamed skeletal muscle in mice. A single low-dose injection of the hybrid system locally reduces inflammatory cytokine levels. Biodistribution of liposome-loaded neutrophils in a human-disease-relevant myocardial ischemia reperfusion injury mouse model after i.v. injection confirms the ability of injected neutrophils to carry loaded liposomes to inflammation sites. This strategy shows the potential of nanocarrier-loaded neutrophils as a universal platform to deliver anti-inflammatory drugs to promote tissue regeneration in inflammatory diseases.


Subject(s)
Muscle, Skeletal/metabolism , Myocardial Ischemia/metabolism , Neutrophils/metabolism , Animals , Humans , Inflammation/metabolism , Liposomes , Mice
5.
Front Cell Dev Biol ; 8: 695, 2020.
Article in English | MEDLINE | ID: mdl-32850816

ABSTRACT

Mediastinal lymphadenopathy and auto-antibodies are clinical phenomena during ischemic heart failure pointing to an autoimmune response against the heart. T and B cells have been convincingly demonstrated to be activated after myocardial infarction, a prerequisite for the generation of mature auto-antibodies. Yet, little is known about the immunoglobulin isotype repertoire thus pathological potential of anti-heart auto-antibodies during heart failure. We obtained human myocardial tissue from ischemic heart failure patients and induced experimental MI in rats. We found that anti-heart autoimmunity persists during heart failure. Rat mediastinal lymph nodes are enlarged and contain active secondary follicles with mature isotype-switched IgG2a B cells. Mature IgG2a auto-antibodies specific for cardiac antigens are present in rat heart failure serum, and IgG and complement C3 deposits are evident in heart failure tissue of both rats and human patients. Previously established myocardial inflammation, and the herein provided proof of B cell maturation in lymph nodes and myocardial deposition of mature auto-antibodies, provide all the hallmark signs of an established autoimmune response in chronic heart failure.

7.
Dis Model Mech ; 12(3)2019 03 08.
Article in English | MEDLINE | ID: mdl-30858306

ABSTRACT

Patients suffering from systemic autoimmune diseases are at significant risk of cardiovascular complications. This can be due to systemically increased levels of inflammation leading to accelerated atherosclerosis, or due to direct damage to the tissues and cells of the heart. Cardiac complications include an increased risk of myocardial infarction, myocarditis and dilated cardiomyopathy, valve disease, endothelial dysfunction, excessive fibrosis, and bona fide autoimmune-mediated tissue damage by autoantibodies or auto-reactive cells. There is, however, still a considerable need to better understand how to diagnose and treat cardiac complications in autoimmune patients. A range of inducible and spontaneous mouse models of systemic autoimmune diseases is available for mechanistic and therapeutic studies. For this Review, we systematically collated information on the cardiac phenotype in the most common inducible, spontaneous and engineered mouse models of systemic lupus erythematosus, rheumatoid arthritis and systemic sclerosis. We also highlight selected lesser-known models of interest to provide researchers with a decision framework to choose the most suitable model for their study of heart involvement in systemic autoimmunity.


Subject(s)
Autoimmunity , Myocardium/pathology , Animals , Disease Models, Animal , Mice , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...