Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Genes Dev ; 38(9-10): 415-435, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38866555

ABSTRACT

The association of genomic loci to the nuclear periphery is proposed to facilitate cell type-specific gene repression and influence cell fate decisions. However, the interplay between gene position and expression remains incompletely understood, in part because the proteins that position genomic loci at the nuclear periphery remain unidentified. Here, we used an Oligopaint-based HiDRO screen targeting ∼1000 genes to discover novel regulators of nuclear architecture in Drosophila cells. We identified the heterochromatin-associated protein Stonewall (Stwl) as a factor promoting perinuclear chromatin positioning. In female germline stem cells (GSCs), Stwl binds and positions chromatin loci, including GSC differentiation genes, at the nuclear periphery. Strikingly, Stwl-dependent perinuclear positioning is associated with transcriptional repression, highlighting a likely mechanism for Stwl's known role in GSC maintenance and ovary homeostasis. Thus, our study identifies perinuclear anchors in Drosophila and demonstrates the importance of gene repression at the nuclear periphery for cell fate.


Subject(s)
Cell Differentiation , Cell Nucleus , Chromatin , Drosophila Proteins , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Chromatin/metabolism , Chromatin/genetics , Cell Nucleus/metabolism , Cell Nucleus/genetics , Female , Cell Differentiation/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Gene Expression Regulation, Developmental/genetics , Drosophila/genetics , Germ Cells/metabolism
2.
Nat Microbiol ; 9(4): 1103-1116, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38503975

ABSTRACT

Microbiomes feature recurrent compositional structures under given environmental conditions. However, these patterns may conceal diverse underlying population dynamics that require intrastrain resolution. Here we developed a genomic tagging system, termed wild-type isogenic standardized hybrid (WISH)-tags, that can be combined with quantitative polymerase chain reaction and next-generation sequencing for microbial strain enumeration. We experimentally validated the performance of 62 tags and showed that they can be differentiated with high precision. WISH-tags were introduced into model and non-model bacterial members of the mouse and plant microbiota. Intrastrain priority effects were tested using one species of isogenic barcoded bacteria in the murine gut and the Arabidopsis phyllosphere, both with and without microbiota context. We observed colonization resistance against late-arriving strains of Salmonella Typhimurium in the mouse gut, whereas the phyllosphere accommodated Sphingomonas latecomers in a manner proportional to their presence at the late inoculation timepoint. This demonstrates that WISH-tags are a resource for deciphering population dynamics underlying microbiome assembly across biological systems.


Subject(s)
Microbiota , Animals , Mice , Microbiota/genetics , Salmonella typhimurium/genetics , Bacteria , Population Dynamics
3.
Bioinformatics ; 40(2)2024 02 01.
Article in English | MEDLINE | ID: mdl-38341646

ABSTRACT

MOTIVATION: DNA barcoding has become a powerful tool for assessing the fitness of strains in a variety of studies, including random transposon mutagenesis screens, attenuation of site-directed mutants, and population dynamics of isogenic strain pools. However, the statistical analysis, visualization, and contextualization of the data resulting from such experiments can be complex and require bioinformatic skills. RESULTS: Here, we developed mBARq, a user-friendly tool designed to simplify these steps for diverse experimental setups. The tool is seamlessly integrated with an intuitive web app for interactive data exploration via the STRING and KEGG databases to accelerate scientific discovery. AVAILABILITY AND IMPLEMENTATION: The tool is implemented in Python. The source code is freely available (https://github.com/MicrobiologyETHZ/mbarq) and the web app can be accessed at: https://microbiomics.io/tools/mbarq-app.


Subject(s)
DNA Barcoding, Taxonomic , Software , DNA , Computational Biology
4.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014085

ABSTRACT

The association of genomic loci to the nuclear periphery is proposed to facilitate cell-type specific gene repression and influence cell fate decisions. However, the interplay between gene position and expression remains incompletely understood, in part because the proteins that position genomic loci at the nuclear periphery remain unidentified. Here, we used an Oligopaint-based HiDRO screen targeting ~1000 genes to discover novel regulators of nuclear architecture in Drosophila cells. We identified the heterochromatin-associated protein, Stonewall (Stwl), as a factor promoting perinuclear chromatin positioning. In female germline stem cells (GSCs), Stwl binds and positions chromatin loci, including GSC differentiation genes, at the nuclear periphery. Strikingly, Stwl-dependent perinuclear positioning is associated with transcriptional repression, highlighting a likely mechanism for Stwl's known role in GSC maintenance and ovary homeostasis. Thus, our study identifies perinuclear anchors in Drosophila and demonstrates the importance of gene repression at the nuclear periphery for cell fate.

5.
Elife ; 122023 02 09.
Article in English | MEDLINE | ID: mdl-36757366

ABSTRACT

Many microbiota-based therapeutics rely on our ability to introduce a microbe of choice into an already-colonized intestine. In this study, we used genetically barcoded Bacteroides thetaiotaomicron (B. theta) strains to quantify population bottlenecks experienced by a B. theta population during colonization of the mouse gut. As expected, this reveals an inverse relationship between microbiota complexity and the probability that an individual wildtype B. theta clone will colonize the gut. The polysaccharide capsule of B. theta is important for resistance against attacks from other bacteria, phage, and the host immune system, and correspondingly acapsular B. theta loses in competitive colonization against the wildtype strain. Surprisingly, the acapsular strain did not show a colonization defect in mice with a low-complexity microbiota, as we found that acapsular strains have an indistinguishable colonization probability to the wildtype strain on single-strain colonization. This discrepancy could be resolved by tracking in vivo growth dynamics of both strains: acapsular B.theta shows a longer lag phase in the gut lumen as well as a slightly slower net growth rate. Therefore, as long as there is no niche competitor for the acapsular strain, this has only a small influence on colonization probability. However, the presence of a strong niche competitor (i.e., wildtype B. theta, SPF microbiota) rapidly excludes the acapsular strain during competitive colonization. Correspondingly, the acapsular strain shows a similarly low colonization probability in the context of a co-colonization with the wildtype strain or a complete microbiota. In summary, neutral tagging and detailed analysis of bacterial growth kinetics can therefore quantify the mechanisms of colonization resistance in differently-colonized animals.


Subject(s)
Bacteroides thetaiotaomicron , Microbiota , Animals , Mice , Polysaccharides
6.
mBio ; 13(3): e0103522, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35546538

ABSTRACT

More than half of women will experience a urinary tract infection (UTI), with uropathogenic Escherichia coli (UPEC) causing ~80% of uncomplicated cases. Iron acquisition systems are essential for uropathogenesis, and UPEC strains encode highly diverse iron acquisition systems, underlining their importance. However, a recent UPEC clinical isolate, HM7, lacks this diversity and instead encodes the synthesis pathway for a sole siderophore, enterobactin. To determine if HM7 possesses unidentified iron acquisition systems, we performed RNA sequencing under iron-limiting conditions and demonstrated that the ferric citrate uptake system (fecABCDE and fecIR) was highly upregulated. Importantly, there are high levels of citrate within urine, some of which is bound to iron, and the fec system is enriched in UPEC isolates compared to fecal strains. Therefore, we hypothesized that HM7 and other similar strains use the fec system to acquire iron in the host. Deletion of both enterobactin biosynthesis and ferric citrate uptake (ΔfecA/ΔentB) abrogates use of ferric citrate as an iron source, and fecA provides an advantage in human urine in the absence of enterobactin. However, in a UTI mouse model, fecA is a fitness factor independent of enterobactin production, likely due to the action of host lipocalin-2 chelating ferrienterobactin. These findings indicate that ferric citrate uptake is used as an iron source when siderophore efficacy is limited, such as in the host during UTI. Defining these novel compensatory mechanisms and understanding the nutritional hierarchy of preferred iron sources within the urinary tract are important in the search for new approaches to combat UTI. IMPORTANCE UPEC, the primary causative agent of uncomplicated UTI, is responsible for five billion dollars in health care costs in the United States each year. Rates of antibiotic resistance are on the rise; therefore, it is vital to understand the mechanisms of UPEC pathogenesis to uncover potential targets for novel therapeutics. Iron acquisition systems used to obtain iron from sequestered host sources are essential for UPEC survival during UTI and have been used as vaccine targets to prevent infection. This study reveals the ferric citrate uptake system is another important iron acquisition system that is highly enriched in UPEC strains. Ferric citrate uptake has not previously been associated with UPEC isolates, underlining the importance of the continued study of these strains to fully understand their mechanisms of pathogenesis.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Urinary Tract Infections , Uropathogenic Escherichia coli , Animals , Citric Acid/metabolism , Enterobactin/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Female , Ferric Compounds , Humans , Iron/metabolism , Mice , Receptors, Cell Surface/metabolism , Siderophores/metabolism , Urinary Tract Infections/genetics , Virulence Factors/genetics , Virulence Factors/metabolism
7.
Cell Host Microbe ; 29(10): 1573-1588.e7, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34453895

ABSTRACT

Despite overall success, T cell checkpoint inhibitors for cancer treatment are still only efficient in a minority of patients. Recently, intestinal microbiota was found to critically modulate anti-cancer immunity and therapy response. Here, we identify Clostridiales members of the gut microbiota associated with a lower tumor burden in mouse models of colorectal cancer (CRC). Interestingly, these commensal species are also significantly reduced in CRC patients compared with healthy controls. Oral application of a mix of four Clostridiales strains (CC4) in mice prevented and even successfully treated CRC as stand-alone therapy. This effect depended on intratumoral infiltration and activation of CD8+ T cells. Single application of Roseburia intestinalis or Anaerostipes caccae was even more effective than CC4. In a direct comparison, the CC4 mix supplementation outperformed anti-PD-1 therapy in mouse models of CRC and melanoma. Our findings provide a strong preclinical foundation for exploring gut bacteria as novel stand-alone therapy against solid tumors.


Subject(s)
Biological Therapy , Clostridiales/immunology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/therapy , Gastrointestinal Microbiome , Animals , CD8-Positive T-Lymphocytes/immunology , Clostridiales/physiology , Colorectal Neoplasms/microbiology , Humans , Immunity , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Symbiosis
8.
Curr Protoc ; 1(8): e218, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34387940

ABSTRACT

The mOTU profiler, or mOTUs for short, is a software tool that enables the profiling of microbial communities in terms of their taxonomic composition, relative abundance of metabolically active members, and diversity of strain populations. To this end, it maintains a database of single-copy phylogenetic marker gene sequences, which are used as a reference to which short read metagenomic and metatranscriptomic reads are mapped for the identification and quantification of microbial taxa. Here, we describe the most common use cases of the mOTU profiler in two basic protocols. Additional supporting protocols provide information on its installation and in-depth guidance on adjusting its settings for increasing or decreasing the stringency with which taxa are detected and quantified, as well as for customizing the output file format. Guidelines for understanding the profiling results are provided, along with additional information on unique features, methodological details, and the development history of the tool. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Metagenomic and metatranscriptomic mOTU profiling Basic Protocol 2: Metagenomic SNV profiling Support Protocol 1: Installing mOTUs Support Protocol 2: Profiling pipeline-step by step Support Protocol 3: The mOTUs profiling routine using advanced parameters Support Protocol 4: Metagenomic SNV calling: advanced parameters.


Subject(s)
Metagenomics , Microbiota , Humans , Metagenome , Microbiota/genetics , Phylogeny , Software
9.
Nat Commun ; 12(1): 5114, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34433819

ABSTRACT

Base editors are chimeric ribonucleoprotein complexes consisting of a DNA-targeting CRISPR-Cas module and a single-stranded DNA deaminase. They enable transition of C•G into T•A base pairs and vice versa on genomic DNA. While base editors have great potential as genome editing tools for basic research and gene therapy, their application has been hampered by a broad variation in editing efficiencies on different genomic loci. Here we perform an extensive analysis of adenine- and cytosine base editors on a library of 28,294 lentivirally integrated genetic sequences and establish BE-DICT, an attention-based deep learning algorithm capable of predicting base editing outcomes with high accuracy. BE-DICT is a versatile tool that in principle can be trained on any novel base editor variant, facilitating the application of base editing for research and therapy.


Subject(s)
Deep Learning , Gene Library , Algorithms , Base Pairing , Gene Editing , Genome , High-Throughput Nucleotide Sequencing , Humans
10.
mBio ; 11(4)2020 08 11.
Article in English | MEDLINE | ID: mdl-32788379

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is the primary causative agent of uncomplicated urinary tract infections (UTIs). UPEC fitness and virulence determinants have been evaluated in a variety of laboratory settings, including a well-established mouse model of UTI. However, the extent to which bacterial physiologies differ between experimental models and human infections remains largely understudied. To address this important issue, we compared the transcriptomes of three different UPEC isolates in human infection and under a variety of laboratory conditions, including LB culture, filter-sterilized urine culture, and the UTI mouse model. We observed high correlation in gene expression between the mouse model and human infection in all three strains examined (Pearson correlation coefficients of 0.86 to 0.87). Only 175 of 3,266 (5.4%) genes shared by all three strains had significantly different expression levels, with the majority of them (145 genes) downregulated in patients. Importantly, gene expression levels of both canonical virulence factors and metabolic machinery were highly similar between the mouse model and human infection, while the in vitro conditions displayed more substantial differences. Interestingly, comparison of gene expression between the mouse model and human infection hinted at differences in bladder oxygenation as well as nutrient composition. In summary, our work strongly validates the continued use of this mouse model for the study of the pathogenesis of human UTI.IMPORTANCE Different experimental models have been used to study UPEC pathogenesis, including in vitro cultures in different media, tissue culture, and mouse models of infection. The last is especially important since it allows evaluation of mechanisms of pathogenesis and potential therapeutic strategies against UPEC. Bacterial physiology is greatly shaped by environment, and it is therefore critical to understand how closely bacterial physiology in any experimental model relates to human infection. In this study, we found strong correlation in bacterial gene expression between the mouse model and human UTI using identical strains, suggesting that the mouse model accurately mimics human infection, definitively supporting its continued use in UTI research.


Subject(s)
Escherichia coli Infections/microbiology , Transcriptome , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/genetics , Animals , Disease Models, Animal , Escherichia coli Proteins/genetics , Female , Gene Expression Regulation, Bacterial , Humans , Mice , Uropathogenic Escherichia coli/pathogenicity , Virulence Factors/genetics
11.
mBio ; 11(2)2020 04 28.
Article in English | MEDLINE | ID: mdl-32345645

ABSTRACT

Urinary tract infections (UTI) affect half of all women at least once during their lifetime. The rise in the numbers of extended-spectrum beta-lactamase-producing strains and the potential for carbapenem resistance within uropathogenic Escherichia coli (UPEC), the most common causative agent of UTI, create an urgent need for vaccine development. Intranasal immunization of mice with UPEC outer membrane iron receptors FyuA, Hma, IreA, and IutA, conjugated to cholera toxin, provides protection in the bladder or kidneys under conditions of challenge with UPEC strain CFT073 or strain 536. On the basis of these data, we sought to optimize the vaccination route (intramuscular, intranasal, or subcutaneous) in combination with adjuvants suitable for human use, including aluminum hydroxide gel (alum), monophosphoryl lipid A (MPLA), unmethylated CpG synthetic oligodeoxynucleotides (CpG), polyinosinic:polycytidylic acid (polyIC), and mutated heat-labile E. coli enterotoxin (dmLT). Mice intranasally vaccinated with dmLT-IutA and dmLT-Hma displayed significant reductions in bladder colonization (86-fold and 32-fold, respectively), with 40% to 42% of mice having no detectable CFU. Intranasal vaccination of mice with CpG-IutA and polyIC-IutA significantly reduced kidney colonization (131-fold) and urine CFU (22-fold), respectively. dmLT generated the most consistently robust antibody response in intranasally immunized mice, while MPLA and alum produced greater concentrations of antigen-specific serum IgG with intramuscular immunization. On the basis of these results, we conclude that intranasal administration of Hma or IutA formulated with dmLT adjuvant provides the greatest protection from UPEC UTI. This report advances our progress toward a vaccine against uncomplicated UTI, which will significantly improve the quality of life for women burdened by recurrent UTI and enable better antibiotic stewardship.IMPORTANCE Urinary tract infections (UTI) are among the most common bacterial infection in humans, affecting half of all women at least once during their lifetimes. The rise in antibiotic resistance and health care costs emphasizes the need to develop a vaccine against the most common UTI pathogen, Escherichia coli Vaccinating mice intranasally with a detoxified heat-labile enterotoxin and two surface-exposed receptors, Hma or IutA, significantly reduced bacterial burden in the bladder. This work highlights progress in the development of a UTI vaccine formulated with adjuvants suitable for human use and antigens that encode outer membrane iron receptors required for infection in the iron-limited urinary tract.


Subject(s)
Administration, Intranasal , Escherichia coli Proteins/immunology , Urinary Tract Infections/prevention & control , Uropathogenic Escherichia coli/immunology , Vaccines/therapeutic use , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Animals , Antibodies, Bacterial/blood , Bacterial Outer Membrane Proteins/immunology , Drug Administration Routes , Escherichia coli Infections/microbiology , Escherichia coli Infections/prevention & control , Escherichia coli Infections/therapy , Female , Humans , Immunization/methods , Mice , Receptors, Cell Surface/immunology , Urinary Tract Infections/microbiology , Urinary Tract Infections/therapy , Uropathogenic Escherichia coli/pathogenicity , Vaccination/methods , Vaccines/administration & dosage
12.
Mol Microbiol ; 113(1): 153-172, 2020 01.
Article in English | MEDLINE | ID: mdl-31680352

ABSTRACT

Acinetobacter baumannii infects a wide range of anatomic sites including the respiratory tract and bloodstream. Despite its clinical importance, little is known about the molecular basis of A. baumannii pathogenesis. We previously identified the UDP-N-acetyl-d-galactosaminuronic acid (UDP-GalNAcA) biosynthesis genes, gna-gne2, as being critical for survival in vivo. Herein, we demonstrate that Gna-Gne2 are part of a complex network connecting in vivo fitness, cell envelope homeostasis and resistance to antibiotics. The ∆gna-gne2 mutant exhibits a severe fitness defect during bloodstream infection. Capsule production is abolished in the mutant strain, which is concomitant with its inability to survive in human serum. In addition, the ∆gna-gne2 mutant was more susceptible to vancomycin and unable to grow on MacConkey plates, indicating an alteration in cell envelope integrity. Analysis of lipid A by mass spectrometry showed that the hexa- and hepta-acylated species were affected in the gna-gne2 mutant. Finally, the ∆gna-gne2 mutant was more susceptible to several classes of antibiotics. Together, this study demonstrates the importance of UDP-GalNAcA in the pathobiology of A. baumannii. By interrupting its biosynthesis, we showed that this molecule plays a critical role in capsule biosynthesis and maintaining the cell envelope homeostasis.


Subject(s)
Acinetobacter baumannii/genetics , Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Hexuronic Acids/metabolism , Acinetobacter Infections/microbiology , Animals , Female , Genes, Bacterial , Mice , Mice, Inbred CBA
13.
Elife ; 82019 10 21.
Article in English | MEDLINE | ID: mdl-31633483

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is the major causative agent of uncomplicated urinary tract infections (UTIs). A common virulence genotype of UPEC strains responsible for UTIs is yet to be defined, due to the large variation of virulence factors observed in UPEC strains. We hypothesized that studying UPEC functional responses in patients might reveal universal UPEC features that enable pathogenesis. Here we identify a transcriptional program shared by genetically diverse UPEC strains isolated from 14 patients during uncomplicated UTIs. Strikingly, this in vivo gene expression program is marked by upregulation of translational machinery, providing a mechanism for the rapid growth within the host. Our analysis indicates that switching to a more specialized catabolism and scavenging lifestyle in the host allows for the increased translational output. Our study identifies a common transcriptional program underlying UTIs and illuminates the molecular underpinnings that likely facilitate the fast growth rate of UPEC in infected patients.


Subject(s)
Adaptation, Physiological , Escherichia coli Infections/microbiology , Gene Expression Regulation, Bacterial , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/physiology , Female , Gene Expression Profiling , Genotype , Humans , Transcription, Genetic , Uropathogenic Escherichia coli/classification , Uropathogenic Escherichia coli/genetics
14.
mSystems ; 4(4)2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31387930

ABSTRACT

Sulfur is an essential nutrient that contributes to cellular redox homeostasis, transcriptional regulation, and translation initiation when incorporated into different biomolecules. Transport and reduction of extracellular sulfate followed by cysteine biosynthesis is a major pathway of bacterial sulfur assimilation. For the opportunistic pathogen Serratia marcescens, function of the cysteine biosynthesis pathway is required for extracellular phospholipase activity and flagellum-mediated surface motility, but little else is known about the influence of sulfur assimilation on the physiology of this organism. In this work, it was determined that an S. marcescens cysteine auxotroph fails to differentiate into hyperflagellated and elongated swarmer cells and that cysteine, but not other organic sulfur molecules, restores swarming motility to these bacteria. The S. marcescens cysteine auxotroph further exhibits reduced transcription of phospholipase, hemolysin, and flagellin genes, each of which is subject to transcriptional control by the flagellar regulatory system. Based on these data and the central role of cysteine in sulfur assimilation, it was reasoned that environmental sulfur availability may contribute to the regulation of these functions in S. marcescens Indeed, bacteria that are starved for sulfate exhibit substantially reduced transcription of the genes for hemolysin, phospholipase, and the FlhD flagellar master regulator. A global transcriptomic analysis further defined a large set of S. marcescens genes that are responsive to extracellular sulfate availability, including genes that encode membrane transport, nutrient utilization, and metabolism functions. Finally, sulfate availability was demonstrated to alter S. marcescens cytolytic activity, suggesting that sulfate assimilation may impact the virulence of this organism.IMPORTANCE Serratia marcescens is a versatile bacterial species that inhabits diverse environmental niches and is capable of pathogenic interactions with host organisms ranging from insects to humans. This report demonstrates for the first time the extensive impacts that environmental sulfate availability and cysteine biosynthesis have on the transcriptome of S. marcescens The finding that greater than 1,000 S. marcescens genes are differentially expressed depending on sulfate availability suggests that sulfur abundance is a crucial factor that controls the physiology of this organism. Furthermore, the high relative expression levels for the putative virulence factors flagella, phospholipase, and hemolysin in the presence of sulfate suggests that a sulfur-rich host environment could contribute to the transcription of these genes during infection.

15.
Infect Immun ; 86(8)2018 08.
Article in English | MEDLINE | ID: mdl-29760215

ABSTRACT

The gonococcal Opa proteins are an antigenically variable family of surface adhesins that bind human carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), CEACAM3, CEACAM5, and/or CEACAM6, cell surface glycoproteins that are differentially expressed on a broad spectrum of human cells and tissues. While they are presumed to be important for infection, the significance of various Opa-CEACAM-mediated cellular interactions in the context of the genital tract has remained unclear. Here, we observed that CEACAM1 and CEACAM5 are differentially expressed on epithelia lining the upper and lower portions of the human female genital tract, respectively. Using transgenic mouse lines expressing human CEACAMs in a manner that reflects this differential pattern, we considered the impact of Opa-CEACAM interactions during uncomplicated lower genital tract infections versus during pelvic inflammatory disease. Our results demonstrate that Opa-CEACAM5 binding on vaginal epithelia facilitates the long-term colonization of the lower genital tract, while Opa protein binding to CEACAM1 on uterine epithelia enhances gonococcal association and penetration into these tissues. While these Opa-dependent interactions with CEACAM-expressing epithelial surfaces promote infection, Opa binding by neutrophil-expressed CEACAMs counterbalances this by facilitating more effective gonococcal clearance. Furthermore, during uterine infections, CEACAM-dependent tissue invasion aggravates disease pathology by increasing the acute inflammatory response. Together, these findings demonstrate that the outcome of infection is determined by both the cell type-specific expression of human CEACAMs and the CEACAM specificity of the Opa variants expressed, which combine to determine the level of gonococcal association with the genital mucosa versus the extent of CEACAM-dependent inflammation and gonococcal clearance by neutrophils.


Subject(s)
Antigens, CD/metabolism , Bacterial Adhesion , Bacterial Outer Membrane Proteins/metabolism , Carcinoembryonic Antigen/metabolism , Cell Adhesion Molecules/metabolism , Genitalia, Female/pathology , Gonorrhea/physiopathology , Reproductive Tract Infections/physiopathology , Animals , Disease Models, Animal , Epithelial Cells/metabolism , Female , GPI-Linked Proteins/metabolism , Gene Expression Profiling , Genitalia, Female/microbiology , Gonorrhea/microbiology , Host-Pathogen Interactions , Humans , Immunohistochemistry , Mice, Inbred C57BL , Mice, Transgenic , Neisseria gonorrhoeae/physiology , Reproductive Tract Infections/microbiology , Treatment Outcome , Uterus/microbiology , Uterus/pathology , Vagina/microbiology , Vagina/pathology
16.
Cell Microbiol ; 20(1)2018 01.
Article in English | MEDLINE | ID: mdl-28886618

ABSTRACT

The neutrophil-specific innate immune receptor CEACAM3 functions as a decoy to capture Gram-negative pathogens, such as Neisseria gonorrhoeae, that exploit CEACAM family members to adhere to the epithelium. Bacterial binding to CEACAM3 results in their efficient engulfment and triggers activation of an nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-dependent inflammatory response by human neutrophils. Herein, we report that CEACAM3 cross-linking is not sufficient for induction of cytokine production and show that the inflammatory response induced by Neisseria gonorrhoeae infection is elicited by an integration of signals from CEACAM3 and toll-like receptors. Using neutrophils from a human CEACAM-expressing mouse line (CEABAC), we use a genetic approach to reveal a molecular bifurcation of the CEACAM3-mediated antimicrobial and inflammatory responses. Ex vivo experiments with CEABAC-Rac2-/- , CEABAC-Bcl10-/- , and CEABAC-Malt1-/- neutrophils indicate that these effectors are not necessary for gonococcal engulfment, yet all 3 effectors contribute to CEACAM3-mediated cytokine production. Interestingly, although Bcl10 and Malt1 are often inextricably linked, Bcl10 enabled synergy between toll-like receptor 4 and CEACAM3, whereas Malt1 did not. Together, these findings reveal an integration of the specific innate immune receptor CEACAM3 into the network of more conventional pattern recognition receptors, providing a mechanism by which the innate immune system can unleash its response to a relentless pathogen.


Subject(s)
B-Cell CLL-Lymphoma 10 Protein/genetics , Carcinoembryonic Antigen/immunology , Gonorrhea/immunology , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , Neisseria gonorrhoeae/immunology , Neutrophils/immunology , Toll-Like Receptor 4/immunology , Animals , Antigens, CD/immunology , B-Cell CLL-Lymphoma 10 Protein/immunology , Cell Adhesion Molecules/immunology , Cells, Cultured , GPI-Linked Proteins/immunology , Gonorrhea/microbiology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/immunology , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/immunology , RAC2 GTP-Binding Protein
17.
Infect Immun ; 86(3)2018 03.
Article in English | MEDLINE | ID: mdl-29229730

ABSTRACT

Urinary tract infection (UTI) is the second most common infection in humans, making it a global health priority. Nearly half of all women will experience a symptomatic UTI, with uropathogenic Escherichia coli (UPEC) being the major causative agent of the infection. Although there has been extensive research on UPEC virulence determinants, the importance of host-specific metabolism remains understudied. We report here that UPEC upregulates the expression of ethanolamine utilization genes during uncomplicated UTIs in humans. We further show that UPEC ethanolamine metabolism is required for effective bladder colonization in the mouse model of ascending UTI and is dispensable for bladder colonization in an immunocompromised mouse model of UTI. We demonstrate that although ethanolamine metabolism mutants do not show increased susceptibility to antimicrobial responses of neutrophils, this metabolic pathway is important for surviving the innate immune system during UTI. This study reveals a novel aspect of UPEC metabolism in the host and provides evidence for an underappreciated link between bacterial metabolism and the host immune response.


Subject(s)
Escherichia coli Infections/metabolism , Escherichia coli Proteins/genetics , Ethanolamine/metabolism , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/metabolism , Animals , Escherichia coli Infections/microbiology , Escherichia coli Proteins/metabolism , Female , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions , Humans , Mice , Mice, Inbred C57BL , Urinary Tract Infections/metabolism , Uropathogenic Escherichia coli/genetics
18.
Science ; 348(6240): 1251-5, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-26068852

ABSTRACT

Host recognition of pathogen-associated molecular patterns (PAMPs) initiates an innate immune response that is critical for pathogen elimination and engagement of adaptive immunity. Here we show that mammalian cells can detect and respond to the bacterial-derived monosaccharide heptose-1,7-bisphosphate (HBP). A metabolic intermediate in lipopolysaccharide biosynthesis, HBP is highly conserved in Gram-negative bacteria, yet absent from eukaryotic cells. Detection of HBP within the host cytosol activated the nuclear facto κB pathway in vitro and induced innate and adaptive immune responses in vivo. Moreover, we used a genome-wide RNA interference screen to uncover an innate immune signaling axis, mediated by phosphorylation-dependent oligomerization of the TRAF-interacting protein with forkhead-associated domain (TIFA) that is triggered by HBP. Thus, HBP is a PAMP that activates TIFA-dependent immunity to Gram-negative bacteria.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Gram-Negative Bacteria/immunology , Host-Pathogen Interactions/immunology , Immunity, Innate , Sugar Phosphates/immunology , Adaptor Proteins, Signal Transducing/metabolism , Burkholderia/immunology , Cytosol/chemistry , Cytosol/immunology , Escherichia coli/immunology , Flagellin/immunology , Genetic Testing , Gram-Negative Bacteria/metabolism , HEK293 Cells , Host-Pathogen Interactions/genetics , Humans , Jurkat Cells , NF-kappa B/immunology , Neisseria gonorrhoeae/immunology , Neisseria meningitidis/immunology , RNA Interference , Sugar Phosphates/analysis , Sugar Phosphates/metabolism , TNF Receptor-Associated Factor 6/immunology , TNF Receptor-Associated Factor 6/metabolism
19.
Infect Immun ; 83(4): 1372-83, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25605771

ABSTRACT

Infections by Neisseria gonorrhoeae are increasingly common, are often caused by antibiotic-resistant strains, and can result in serious and lasting sequelae, prompting the reemergence of gonococcal disease as a leading global health concern. N. gonorrhoeae is a human-restricted pathogen that primarily colonizes urogenital mucosal surfaces. Disease progression varies greatly between the sexes: men usually present with symptomatic infection characterized by a painful purulent urethral discharge, while in women, the infection is often asymptomatic, with the most severe pathology occurring when the bacteria ascend from the lower genital tract into the uterus and fallopian tubes. Classical clinical studies demonstrated that clinically infectious strains uniformly express Opa adhesins; however, their specificities were unknown at the time. While in vitro studies have since identified CEACAM proteins as the primary target of Opa proteins, the gonococcal specificity for this human family of receptors has not been addressed in the context of natural infection. In this study, we characterize a collection of low-passage-number clinical-specimen-derived N. gonorrhoeae isolates for Opa expression and assess their CEACAM-binding profiles. We report marked in vivo selection for expression of phase-variable Opa proteins that bind CEACAM1 and CEACAM5 but selection against expression of Opa variants that bind to the neutrophil-restricted decoy receptor CEACAM3. This is the first study showing phenotypic selection for distinct CEACAM-binding phenotypes in vivo, and it supports the opposing functions of CEACAMs that facilitate infection versus driving inflammation within the genital tract.


Subject(s)
Antigens, CD/metabolism , Bacterial Adhesion/genetics , Bacterial Outer Membrane Proteins/metabolism , Carcinoembryonic Antigen/metabolism , Cell Adhesion Molecules/metabolism , Gonorrhea/immunology , Adhesins, Bacterial/metabolism , Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/genetics , Cell Degranulation/immunology , Cell Line , Cervix Uteri/microbiology , Female , GPI-Linked Proteins/metabolism , Gonorrhea/microbiology , Humans , Inflammation/immunology , Male , Neisseria gonorrhoeae/immunology , Neisseria gonorrhoeae/isolation & purification , Neutrophils/immunology , Protein Binding , Protein Isoforms/metabolism , Urethra/microbiology
20.
PLoS Pathog ; 10(9): e1004341, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25188454

ABSTRACT

An overwhelming neutrophil-driven response causes both acute symptoms and the lasting sequelae that result from infection with Neisseria gonorrhoeae. Neutrophils undergo an aggressive opsonin-independent response to N. gonorrhoeae, driven by the innate decoy receptor CEACAM3. CEACAM3 is exclusively expressed by human neutrophils, and drives a potent binding, phagocytic engulfment and oxidative killing of Opa-expressing bacteria. In this study, we sought to explore the contribution of neutrophils to the pathogenic inflammatory process that typifies gonorrhea. Genome-wide microarray and biochemical profiling of gonococcal-infected neutrophils revealed that CEACAM3 engagement triggers a Syk-, PKCδ- and Tak1-dependent signaling cascade that results in the activation of an NF-κB-dependent transcriptional response, with consequent production of pro-inflammatory cytokines. Using an in vivo model of N. gonorrhoeae infection, we show that human CEACAM-expressing neutrophils have heightened migration toward the site of the infection where they may be further activated upon Opa-dependent binding. Together, this study establishes that the role of CEACAM3 is not restricted to the direct opsonin-independent killing by neutrophils, since it also drives the vigorous inflammatory response that typifies gonorrhea. By carrying the potential to mobilize increasing numbers of neutrophils, CEACAM3 thereby represents the tipping point between protective and pathogenic outcomes of N. gonorrhoeae infection.


Subject(s)
Biomarkers/metabolism , Gonorrhea/immunology , Inflammation Mediators/metabolism , Inflammation/etiology , Neisseria gonorrhoeae/pathogenicity , Neutrophils/immunology , Animals , Bacterial Adhesion , Carcinoembryonic Antigen/genetics , Carcinoembryonic Antigen/metabolism , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Gene Expression Profiling , Gonorrhea/metabolism , Gonorrhea/microbiology , Humans , Inflammation/metabolism , Inflammation/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Transgenic , Neisseria gonorrhoeae/immunology , Neutrophils/microbiology , Oligonucleotide Array Sequence Analysis , Oxidative Stress , Phagocytosis/physiology , Protein-Tyrosine Kinases/metabolism , Signal Transduction , Syk Kinase
SELECTION OF CITATIONS
SEARCH DETAIL