Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Biosci ; 24(3): e2300324, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37827519

ABSTRACT

This study focuses on creating a specialized nanogel for targeted drug delivery in cancer treatment, specifically targeting prostate cancer. This nanogel (referred to as SGK 636/Peptide 563/PEtOx nanogel) is created using hydrophilic poly(2-ethyl-2-oxazoline) (PEtOx) through a combination of living/cationic ring-opening polymerization (CROP) and alkyne-azide cycloaddition (CuAAC) "click" chemical reactions. A fluorescent probe (BODIPY) is also conjugated with the nanogel to monitor drug delivery. The characterizations through 1 H-NMR, and FT-IR, SEM, TEM, and DLS confirm the successful production of uniform, and spherical nanogels with controllable sizes (100 to 296 nm) and stability in physiological conditions. The biocompatibility of nanogels is evaluated using MTT cytotoxicity assays, revealing dose-dependent cytotoxicity. Drug-loaded nanogels exhibited significantly higher cytotoxicity against cancer cells in vitro compared to drug-free nanogels. Targeting efficiency is examined using both peptide-conjugated and peptide-free nanogels, with the intracellular uptake of peptide 563-conjugated nanogels by tumor cells being 60-fold higher than that of nanogels without the peptide. The findings suggest that the prepared nanogel holds great potential for various drug delivery applications due to its ease of synthesis, tunable functionality, non-toxicity, and enhanced intracellular uptake in the tumor region.


Subject(s)
Drug Delivery Systems , Polyethyleneimine , Prostatic Neoplasms , Humans , Male , Nanogels , Spectroscopy, Fourier Transform Infrared , Polyethylene Glycols/chemistry , Prostatic Neoplasms/drug therapy , Peptides/pharmacology , Drug Carriers/chemistry
2.
ACS Omega ; 5(43): 28273-28284, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33163811

ABSTRACT

Tissue transglutaminase (TG2) is a multifunctional protein that can act as a cross-linking enzyme, GTPase/ATPase, protein kinase, and protein disulfide isomerase. TG2 is involved in cell adhesion, migration, invasion, and growth, as well as epithelial-mesenchymal transition (EMT). Our previous findings indicate that the increased expression of TG2 in renal cell carcinoma (RCC) results in tumor metastasis with a significant decrease in disease- and cancer-specific survival outcome. Given the importance of the prometastatic activity of TG2 in RCC, in the present study, we aim to investigate the relative contribution of TG2's transamidase and guanosine triphosphate (GTP)-binding/GTPase activity in the cell migration, invasion, EMT, and cancer stemness of RCC. For this purpose, the mouse RCC cell line RenCa was transduced with wild-type-TG2 (wt-TG2), GTP-binding deficient-form TG2-R580A, transamidase-deficient form with low GTP-binding affinity TG2-C277S, and transamidase-inactive form TG2-W241A. Our results suggested that predominantly, GTP-binding activity of TG2 is responsible for cell migration and invasion. In addition, CD marker analysis and spheroid assay confirmed that GTP binding/GTPase activity of TG2 is important in the maintenance of mesenchymal character and the cancer stem cell profile. These findings support a prometastatic role for TG2 in RCC that is dependent on the GTP binding/GTPase activity of the enzyme.

SELECTION OF CITATIONS
SEARCH DETAIL