Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Planet Health ; 8(3): e163-e171, 2024 03.
Article in English | MEDLINE | ID: mdl-38453382

ABSTRACT

BACKGROUND: Climate change is expected to have profound effects on the distribution of venomous snake species, including reductions in biodiversity and changes in patterns of envenomation of humans and domestic animals. We estimated the effect of future climate change on the distribution of venomous snake species and potential knock-on effects on biodiversity and public health. METHODS: We built species distribution models based on the geographical distribution of 209 medically relevant venomous snake species (WHO categories 1 and 2) and present climatic variables, and used these models to project the potential distribution of species in 2070. We incorporated different future climatic scenarios into the model, which we used to estimate the loss and gain of areas potentially suitable for each species. We also assessed which countries were likely to gain new species in the future as a result of species crossing national borders. We integrated the species distribution models with different socioeconomic scenarios to estimate which countries would become more vulnerable to snakebites in 2070. FINDINGS: Our results suggest that substantial losses of potentially suitable areas for the survival of most venomous snake species will occur by 2070. However, some species of high risk to public health could gain climatically suitable areas for habitation. Countries such as Niger, Namibia, China, Nepal, and Myanmar could potentially gain several venomous snake species from neighbouring countries. Furthermore, the combination of an increase in climatically suitable areas and socioeconomic factors (including low-income and high rural populations) means that southeast Asia and Africa (and countries including Uganda, Kenya, Bangladesh, India, and Thailand in particular) could have increased vulnerability to snakebites in the future, with potential effects on public human and veterinary health. INTERPRETATION: Loss of venomous snake biodiversity in low-income countries will affect ecosystem functioning and result in the loss of valuable genetic resources. Additionally, climate change will create new challenges to public health in several low-income countries, particularly in southeast Asia and Africa. The international community needs to increase its efforts to counter the effects of climate change in the coming decades. FUNDING: German Research Foundation, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, German Centre for Integrative Biodiversity Research, Ministerio de Ciencia e Innovación de España, European Regional Development Fund.


Subject(s)
Snake Bites , Animals , Humans , Snake Bites/epidemiology , Venomous Snakes , Climate Change , Ecosystem , Public Health , Biodiversity , Kenya
2.
Mar Environ Res ; 192: 106237, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37875034

ABSTRACT

Climate change is affecting the distribution of marine organisms worldwide, including venomous marine gastropods that offer risks to human health, but also potential pharmacological resources, such as Conus sp. Species Distribution Models (SDMs) are valuable tools for predicting species distribution under climate change. The objective of our study was to evaluate the potential distribution of Conus geographus and C. textile in the Indo-Pacific region under different climate change scenarios for 2050 and 2090. We constructed SDMs with MaxEnt for each species, using bioclimatic variables from Bio-ORACLE and NOAA, and occurrence data from GBIF. We projected the best-fit model for the present and different future climate change scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5). We obtained high accuracy SDMs for C. geographus and C. textile, with Temperature and Primary Productivity as the main explanatory variables. Our future projections reveal that both species may react differently to climate change. Southeast Asia and Micronesia will continue to provide a climatically appropriate environment for both species; however, they may become more suitable for C. geographus and less suitable for C. textile. This may lead to a higher risk of human envenomation by C. geographus, but a lower risk by C. textile. A decreased suitability for C. textile may also lead to the loss of potential pharmacological resources among its range. Our study emphasizes how SDMs can be used to assess the future distribution of species with human health implications, which can aid in the monitoring of venomous marine species.


Subject(s)
Conus Snail , Gastropoda , Animals , Humans , Venoms , Climate Change
SELECTION OF CITATIONS
SEARCH DETAIL
...