Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 83(22): 4141-4157.e11, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37977121

ABSTRACT

Biomolecular condensates have emerged as a major organizational principle in the cell. However, the formation, maintenance, and dissolution of condensates are still poorly understood. Transcriptional machinery partitions into biomolecular condensates at key cell identity genes to activate these. Here, we report a specific perturbation of WNT-activated ß-catenin condensates that disrupts oncogenic signaling. We use a live-cell condensate imaging method in human cancer cells to discover FOXO and TCF-derived peptides that specifically inhibit ß-catenin condensate formation on DNA, perturb nuclear ß-catenin condensates in cells, and inhibit ß-catenin-driven transcriptional activation and colorectal cancer cell growth. We show that these peptides compete with homotypic intermolecular interactions that normally drive condensate formation. Using this framework, we derive short peptides that specifically perturb condensates and transcriptional activation of YAP and TAZ in the Hippo pathway. We propose a "monomer saturation" model in which short interacting peptides can be used to specifically inhibit condensate-associated transcription in disease.


Subject(s)
Neoplasms , beta Catenin , Humans , beta Catenin/genetics , beta Catenin/metabolism , Signal Transduction , Hippo Signaling Pathway , Peptides/genetics
2.
J Mol Biol ; 435(4): 167935, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36586462

ABSTRACT

Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1) acts as a negative regulator of autophagy by interacting with Beclin 1 at Golgi membranes in mammalian cells. The molecular mechanism of this interaction is largely unknown. We recently showed that human GAPR-1 (hGAPR-1) has amyloidogenic properties resulting in the formation of protein condensates upon overexpression in Saccharomyces cerevisiae. Here we show that human Beclin 1 (hBeclin 1) has several predicted amyloidogenic regions and that overexpression of hBeclin 1-mCherry in yeast also results in the formation of fluorescent protein condensates. Surprisingly, co-expression of hGAPR-1-GFP and hBeclin 1-mCherry results in a strong reduction of hBeclin 1 condensates. Mutations of the known interaction site on the hGAPR-1 and hBeclin 1 surface abolished the effect on condensate formation during co-expression without affecting the condensate formation properties of the individual proteins. Similarly, a hBeclin 1-derived B18 peptide that is known to bind hGAPR-1 and to interfere with the interaction between hGAPR-1 and hBeclin 1, abolished the reduction of hBeclin 1 condensates by co-expression of hGAPR-1. These results indicate that the same type of protein-protein interactions interfere with condensate formation during co-expression of hGAPR-1 and hBeclin 1 as previously described for their interaction at Golgi membranes. The amyloidogenic properties of the B18 peptide were, however, important for the interaction with hGAPR-1, as mutant peptides with reduced amyloidogenic properties also showed reduced interaction with hGAPR-1 and reduced interference with hGAPR-1/hBeclin 1 condensate formation. We propose that amyloidogenic interactions take place between hGAPR-1 and hBeclin 1 prior to condensate formation.


Subject(s)
Amyloidogenic Proteins , Beclin-1 , Membrane Proteins , Protein Interaction Mapping , Animals , Humans , Beclin-1/genetics , Beclin-1/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Saccharomyces cerevisiae , Mutation , Amyloidogenic Proteins/genetics , Amyloidogenic Proteins/metabolism , Protein Multimerization , Protein Interaction Domains and Motifs
3.
J Mol Biol ; 433(19): 167162, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34298062

ABSTRACT

Many proteins that can assemble into higher order structures termed amyloids can also concentrate into cytoplasmic inclusions via liquid-liquid phase separation. Here, we study the assembly of human Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1), an amyloidogenic protein of the Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins (CAP) protein superfamily, into cytosolic inclusions in Saccharomyces cerevisiae. Overexpression of GAPR-1-GFP results in the formation GAPR-1 oligomers and fluorescent inclusions in yeast cytosol. These cytosolic inclusions are dynamic and reversible organelles that gradually increase during time of overexpression and decrease after promoter shut-off. Inclusion formation is, however, a regulated process that is influenced by factors other than protein expression levels. We identified N-myristoylation of GAPR-1 as an important determinant at early stages of inclusion formation. In addition, mutations in the conserved metal-binding site (His54 and His103) enhanced inclusion formation, suggesting that these residues prevent uncontrolled protein sequestration. In agreement with this, we find that addition of Zn2+ metal ions enhances inclusion formation. Furthermore, Zn2+ reduces GAPR-1 protein degradation, which indicates stabilization of GAPR-1 in inclusions. We propose that the properties underlying both the amyloidogenic properties and the reversible sequestration of GAPR-1 into inclusions play a role in the biological function of GAPR-1 and other CAP family members.


Subject(s)
Inclusion Bodies/chemistry , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Saccharomyces cerevisiae/growth & development , Crystallography, X-Ray , Cytosol/chemistry , Cytosol/metabolism , Humans , Membrane Proteins/genetics , Protein Aggregates , Protein Conformation , Protein Domains , Protein Engineering , Proteolysis , Saccharomyces cerevisiae/genetics , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...