Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
In Vitro Cell Dev Biol Anim ; 60(3): 236-248, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38502372

ABSTRACT

The epidermis is largely composed of keratinocytes (KCs), and the proliferation and differentiation of KCs from the stratum basale to the stratum corneum is the cellular hierarchy present in the epidermis. In this study, we explore the differentiation abilities of human hematopoietic stem cells (HSCs) into KCs. Cultured HSCs positive for CD34, CD45, and CD133 with prominent telomerase activity were induced with keratinocyte differentiation medium (KDM), which is composed of bovine pituitary extract (BPE), epidermal growth factor (EGF), insulin, hydrocortisone, epinephrine, transferrin, calcium chloride (CaCl2), bone morphogenetic protein 4 (BMP4), and retinoic acid (RA). Differentiation was monitored through the expression of cytokeratin markers K5 (keratin 5), K14 (keratin 14), K10 (keratin 10), K1 (keratin 1), transglutaminase 1 (TGM1), involucrin (IVL), and filaggrin (FLG) on day 0 (D0), day 6 (D6), day 11 (D11), day 18 (D18), day 24 (D24), and day 30 (D30) using immunocytochemistry, fluorescence microscopy, flow cytometry, qPCR, and Western blotting. The results revealed the expression of K5 and K14 genes in D6 cells (early keratinocytes), K10 and K1 genes in D11-D18 cells (mature keratinocytes) with active telomerase enzyme, and FLG, IVL, and TGM1 in D18-D24 cells (terminal keratinocytes), and by D30, the KCs were completely enucleated similar to cornified matrix. This method of differentiation of HSCs to KCs explains the cellular order exists in the normal epidermis and opens the possibility of exploring the use of human HSCs in the epidermal differentiation.


Subject(s)
Telomerase , Animals , Humans , Cell Differentiation , Cells, Cultured , Epidermal Cells/metabolism , Epidermis/metabolism , Hematopoietic Stem Cells/metabolism , Keratinocytes/metabolism , Keratins/metabolism , Telomerase/genetics , Telomerase/metabolism
2.
Viruses ; 15(8)2023 07 29.
Article in English | MEDLINE | ID: mdl-37631999

ABSTRACT

There has been a continuous evolution in the SARS-CoV-2 genome; therefore, it is necessary to monitor the shifts in the SARS-CoV-2 variants. This study aimed to detect various SARS-CoV-2 variants circulating in the state of Andhra Pradesh, India. The study attempted to sequence the complete S-gene of SARS-CoV-2 of 104 clinical samples using Sanger's method to analyze and compare the mutations with the global prevalence. The method standardized in this study was able to amplify the complete length of the S-gene (3822 bp). The resulting nucleotide and amino acid mutations were analyzed and compared with the local and global SARS-CoV-2 databases using Nextclade and GISAID tools. The Delta variant was the most common variant reported in the present study, followed by the Omicron variant. A variant name was not assigned to thirteen samples using the Nextclade tool. There were sixty-nine types of amino acid substitutions reported (excluding private mutations) throughout the spike gene. The T95I mutation was observed predominantly in Delta variants (15/38), followed by Kappa (3/8) and Omicron (1/31). Nearly all Alpha and Omicron lineages had the N501Y substitution; Q493R was observed only in the Omicron lineage; and other mutations (L445, F486, and S494) were not observed in the present study. Most of these mutations found in the Omicron variant are located near the furin cleavage site, which may play a role in the virulence, pathogenicity, and transmission of the virus. Phylogenetic analysis showed that the 104 complete CDS of SARS-CoV-2 belonged to different phylogenetic clades like 20A, 20B, 20I (Alpha), 21A (Delta), 21B (Kappa), 21I (Delta), 21J (Delta), and 21L (Omicron).


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Phylogeny , India/epidemiology , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...