Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1280: 341878, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37858543

ABSTRACT

Simple approach for rapid screening of corona virus disease 2019 (COVID-19) has been developed. This applied gas chromatography-flame ionization detector (GC-FID) analyzing the potential compound marker in sweat samples obtained from COVID-19 positive and negative volunteers in Bangkok, Thailand. The samples were collected by using cotton rods for 15 min, heated at 90 °C for 5 min, and the volatile compounds in the headspace (HS) were injected (5.00 mL) at 150 °C and separated within 13.7 min. The marker peak was tentatively identified as p-cymene by the authentic standard injection and comparison with the GC-mass spectrometry (GC-MS) and comprehensive two-dimensional GC (GC × GC)-MS analysis. Possible mechanisms for the presence of p-cymene were proposed. The marker peak area thresholds were then varied and optimized via construction of the receiver operating characteristic (ROC) curve. With the optimum threshold, the established method offered the accuracy, sensitivity and specificity of 96 %. This method was insignificantly affected (p-value >0.05) by genders, body mass indices, ages, and use of deodorants as well as the p-cymene containing food. However, the performance could be affected by the population with personal hygiene or experiencing the microbiomes producing p-cymene.


Subject(s)
COVID-19 , Sweat , Male , Female , Humans , Flame Ionization/methods , Gas Chromatography-Mass Spectrometry/methods , COVID-19/diagnosis , Thailand
2.
Otolaryngol Head Neck Surg ; 168(5): 1015-1024, 2023 05.
Article in English | MEDLINE | ID: mdl-36876516

ABSTRACT

OBJECTIVE: To evaluate the role of a negative pressure room with a high-efficiency particulate air (HEPA) filtration system on reducing aerosol exposure in common otolaryngology procedures. STUDY DESIGN: Prospective quantification of aerosol generation. SETTINGS: Tertiary care. METHODS: The particle concentrations were measured at various times during tracheostomy tube changes with tracheostomy suctioning, nasal endoscopy with suctioning, and fiberoptic laryngoscopy (FOL), which included 5 times per procedure in a negative pressure isolation room with a HEPA filter and additional 5 times in a nonpressure-controlled room without a HEPA filter. The particle concentrations were measured from the baseline, during the procedure, and continued until 30 minutes after the procedure ended. The particle concentrations were compared to the baseline concentrations. RESULTS: The particle concentration significantly increased from the baseline during tracheostomy tube changes (mean difference [MD] 0.80 × 106 p/m3 , p = .01), tracheostomy suctioning (MD 0.78 × 106 p/m3 , p = .004), at 2 minutes (MD 1.29 × 106 p/m3 , p = .01), and 3 minutes (MD 1.3 × 106 p/m3 , p = .004) after suctioning. There were no significant differences in the mean particle concentrations among various time points during nasal endoscopy with suctioning and FOL neither in isolation nor nonpressure-controlled rooms. CONCLUSION: A negative pressure isolation room with a HEPA filter was revealed to be safe for medical personnel inside and outside the room. Tracheostomy tube change with tracheostomy suctioning required an isolation room because this procedure generated aerosol, while nasal endoscopy with suctioning and FOL did not. Aerosol generated in an isolation room was diminished to the baseline after 4 minutes.


Subject(s)
Otolaryngology , Patient Isolation , Humans , Patient Isolators , Nose , Aerosols
3.
BMC Public Health ; 23(1): 31, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36604667

ABSTRACT

BACKGROUND: There are few thorough studies on the extent and inter-element relationships of heavy metal contamination in printing factory workers, especially in developing countries. The objective of this study was to determine the levels of eight heavy metals, including arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), cobalt (Co), lead (Pb), mercury (Hg), and manganese (Mn), in urine and scalp hair of printing industry workers, and assess inter-element correlations. METHODS: We examined a total of 85 urine samples and 85 scalp hair samples (3 cm hair segments taken from near the scalp) in 85 printing workers from a printing house in Bangkok, Thailand. We used an interviewer-administered questionnaire about participants' printing techniques, work characteristics, and work environment. Urine and scalp hair samples were analyzed for levels of each element using the inductively coupled plasma optical emission spectrometry (ICP-OES) technique. RESULTS: As, Cd, Cr, Ni, Pb were detected in urine with the geometric mean concentration range of 0.0028-0.0209 mg/L, and Hg, Pb, Ni, Cd, Co, Mn, Cr were detected in hair samples (0.4453-7.165 mg/kg dry weight) of printing workers. The geometric mean Ni level was significantly higher in the urine of production line workers than back-office personnel (0.0218 mg/L vs. 0.0132 mg/L; p = 0.0124). The other elements did not differ significantly between production line and back-office workers in either urine or hair. There was also a strong, statistically significant positive correlation between Ni and Co levels in hair samples of workers (r = 0.944, p < 0.0001). CONCLUSIONS: Average concentrations of most of the metals in urine and hair of printing workers were found to be above the upper reference values. The significantly higher concentrations of Ni in production line workers might be due to more exposure to printed materials. A strong inter-element correlation between Ni and Co in hair samples can increase stronger health effects and should be further investigated. This study reveals possible dependencies and impact interactions of heavy metal exposure in printing factory workers.


Subject(s)
Arsenic , Mercury , Metals, Heavy , Humans , Cadmium/analysis , Thailand , Lead/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Manganese/analysis , Nickel/analysis , Arsenic/analysis , Mercury/analysis , Hair/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...