Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nat Prod Bioprospect ; 13(1): 55, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38036688

ABSTRACT

Four highly oxidized pimarane diterpenoids were isolated from Kaempferia takensis rhizomes. Kaemtakols A-C possess a tetracyclic ring with either a fused tetrahydropyran or tetrahydrofuran motif. Kaemtakol D has an unusual rearranged A/B ring spiro-bridged pimarane framework with a C-10 spirocyclic junction and an adjacent 1-methyltricyclo[3.2.1.02,7]octene ring. Structural characterization was achieved using spectroscopic analysis, DP4 + and ECD calculations, as well as X-ray crystallography, and their putative biosynthetic pathways have been proposed. Kaemtakol B showed significant potency in inhibiting nitric oxide production with an IC50 value of 0.69 µM. Molecular docking provided some perspectives on the action of kaemtakol B on iNOS protein.

2.
Pharmaceutics ; 15(9)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37765285

ABSTRACT

This research investigates the gel formation behaviour and drug-controlling performance of doxycycline-loaded ibuprofen-based in-situ forming gels (DH-loaded IBU-based ISGs) for potential applications in periodontal treatment. The investigation begins by exploring the physical properties and gel formation behaviour of the ISGs, with a particular focus on determining their sustained release capabilities. To gain a deeper understanding of the molecular interactions and dynamics within the ISGs, molecular dynamic (MD) simulations are employed. The effects of adding IBU and DH on reducing surface tension and water tolerance properties, thus affecting molecular properties. The phase transformation phenomenon is observed around the interface, where droplets of ISGs move out to the water phase, leading to the precipitation of IBU around the interface. The optimization of drug release profiles ensures sustained local drug release over seven days, with a burst release observed on the first day. Interestingly, different organic solvents show varying abilities to control DH release, with dimethyl sulfoxide (DMSO) demonstrating superior control compared to N-Methyl-2-pyrrolidone (NMP). MD simulations using AMBER20 software provide valuable insights into the movement of individual molecules, as evidenced by root-mean-square deviation (RMSD) values. The addition of IBU to the system results in the retardation of IBU molecule movement, particularly evident in the DMSO series, with the diffusion constant value of DH reducing from 1.2452 to 0.3372 and in the NMP series from 0.3703 to 0.2245 after adding IBU. The RMSD values indicate a reduction in molecule fluctuation of DH, especially in the DMSO system, where it decreases from over 140 to 40 Å. Moreover, their radius of gyration is influenced by IBU, with the DMSO system showing lower values, suggesting an increase in molecular compactness. Notably, the DH-IBU configuration exhibits stable pairing through H-bonding, with a higher amount of H-bonding observed in the DMSO system, which is correlated with the drug retardation efficacy. These significant findings pave the way for the development of phase transformation mechanistic studies and offer new avenues for future design and optimization formulation in the ISG drug delivery systems field.

3.
RSC Adv ; 13(39): 27663-27671, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37727587

ABSTRACT

Ascorbic acid (AA) or vitamin C plays multiple crucial roles, particularly as an antioxidant. This essentially biologically active molecule was selectively detected over other reductants by the synthesized profluorescent nitroxide probe ProN6via a switch-on method. After either a hydrogen atom or single electron transfer from AA to nitroxide, the resulting diamagnetic hydroxylamine was rapidly cyclized to form a fluorescent O-acylalkoxyamine. This cyclization prevented the reoxidation of the corresponding hydroxylamine to the nitroxide, leading to a high precision of detection. A kinetic fluorescence study indicated that ProN6 exhibited higher reactivity than ProN7. Density functional theory (DFT) calculations indicated that the Gibbs free energy of the AA-induced cascade reductive lactonization of ProN6 was lower than that of ProN5 and ProN7. The designed probe achieved the sensitive and specific detection of AA with detection limits of 77.9 nM and 195.9 µM in solution and on paper, respectively. The utilization of the probe as a paper-based fluorescent sensor demonstrated the good accuracy of the quantitative analysis of AA in commercial supplements.

4.
Sci Rep ; 13(1): 13456, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37596365

ABSTRACT

Anticopalic acid (ACP), a labdane type diterpenoid obtained from Kaempferia elegans rhizomes, together with 21 semi-synthetic derivatives, were evaluated for their cancer cytotoxic activity. Most derivatives displayed higher cytotoxic activity than the parent compound ACP in a panel of nine cancer cell lines. Among the tested compounds, the amide 4p showed the highest cytotoxic activity toward leukemia cell lines, HL-60 and MOLT-3, with IC50 values of 6.81 ± 1.99 and 3.72 ± 0.26 µM, respectively. More interestingly, the amide derivative 4l exhibited cytotoxic activity with an IC50 of 13.73 ± 0.04 µM against the MDA-MB-231 triple-negative breast cancer cell line, which is the most aggressive type of breast cancer. Mechanistic studies revealed that 4l induced cell death in MDA-MB-231 cells through non-apoptotic regulated cell death. In addition, western blot analysis showed that compound 4l decreased the phosphorylation of FAK protein in a concentration-dependent manner. Molecular docking simulations elucidated that compound 4l could potentially inhibit FAK activation by binding to a pocket of FAK kinase domain. The data suggested that compound 4l could be a potential FAK inhibitor for treating triple-negative breast cancer and worth being further investigated.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Molecular Docking Simulation , Cell Death , Amides/pharmacology , HL-60 Cells
5.
Pharmaceutics ; 15(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37631268

ABSTRACT

As an alternative to the traditional polymeric-based system, it is now possible to use an in situ forming system that is based on small molecules. Borneol was used as matrix formation in this study. While triacetin was incorporated into the formulation for prolonging the drug release. The objective of this study is to understand the initial period of the solvent exchange mechanism at the molecular level, which would provide a basis for explaining the matrix formation and drug release phenomena. The evaluation of basic physical properties, matrix formation, in vitro drug release, and molecular dynamics (MD) simulation of borneol-based in situ forming matrixes (ISM) was conducted in this study. The proportion of triacetin was found to determine the increase in density and viscosity. The density value was found to be related to viscosity which could be used for the purpose of prediction. Slow self-assembly of ISM upon the addition of triacetin was associated with higher viscosity and lower surface tension. This phenomenon enabled the regulation of solvent exchange and led to sustaining the drug release. In MD simulation using AMBER Tools, the free movement of the drug and the rapid approach to equilibrium of both solvent and water molecule in a solvent exchange mechanism in borneol-free ISM was observed, supporting that sustained release would not occur. Water infiltration was slowed down and NMP movement was restricted by the addition of borneol and triacetin. In addition, the increased proportion of triacetin promoted the diminished down of all substances' movement because of the viscosity. The diffusion constant of relevant molecules decreased with the addition of borneol and/or triacetin. Although the addition of triacetin tended to slow down the solvent exchange and molecular movement from computation modelling results, it may not guarantee to imply the best drug release control. The Low triacetin-incorporated (5%) borneol-based ISM showed the highest ability to sustain the drug release due to its self-assembly and has proper solvent exchange. MD simulation addressed the details of the mechanism at the beginning of the process. Therefore, both MD and classical methods contribute to a clearer understanding of solvent exchange from the molecular to macroscopic level and from the first nanosecond of the formulation contact with water to the 10-day of drug release. These would be beneficial for subsequent research and development efforts in small molecule-based in situ forming systems.

6.
Pharmaceutics ; 14(10)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36297420

ABSTRACT

Quercetin (QCT), a natural flavonoid, is of research interest owing to its pharmacological properties. However, its pharmacokinetic limitations could hinder its widespread therapeutic use. Nanocarriers, especially solid lipid nanoparticles (SLNs), might overcome this constraint. This study aimed to investigate QCT-loaded SLNs prepared via a new approach using a volatile oil. The phase-inversion temperature method was used to incorporate rosemary oil (RMO) into SLNs prepared using solid lipids possessing different chemical structures. Among the solid lipids used in the formulations, trilaurin (TLR) exhibited the smallest particle size and good stability after a temperature cycling test. SLNs prepared with a ratio of RMO to TLR of 1:3 could load QCT with an entrapment efficiency of >60% and drug loading of ~2% w/w. The smallest particle size was achieved using the polyoxyethylene-hydrogenated castor oil RH40, and the particle size depended on the concentration. The drug-release profile of QCT_TLR exhibited prolonged biphasic release for >24 h. QCT_TLR was a safe formulation, as indicated by a cell viability percentage of >75% at <2% v/v. In a computer simulation, the system with RMO enabled smaller sized SLNs than those without RMO. This new discovery shows great promise for producing SLNs via the phase-inversion temperature method with incorporation of volatile oil, particularly for delivering compounds with limited water solubility.

7.
Bioorg Med Chem ; 74: 117048, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36270111

ABSTRACT

Thirty-one meta-ureidophenoxymethyl-1,2,3-triazole derivatives were designed and synthesized via nucleophilic addition, nucleophilic substitution and copper-catalyzed azide-alkyne cycloaddition (CuAAC). The evaluation of their cytotoxicity using MTT assay indicated that almost all derivatives exhibited significantly superior inhibitory activity against hepatocellular carcinoma cell line HepG2 compared to the parental molecule sorafenib (1). Among the series, 5r was the most potent anti-HepG2 agent with IC50 = 1.04 µM, which was almost 5-fold more active than sorafenib (IC50 = 5.06 µM), while the cytotoxic activity against human embryonal lung fibroblast cell line MRC-5 remained comparable to sorafenib. The synthetic derivative 5r, thus, possessed 5.2-time higher selectivity index (SI) than that of sorafenib. Molecular docking studies revealed an efficient interaction of 5r at the same sorafenib's binding region in both B-Raf and VEGFR-2 with lower binding energies than those of sorafenib, consistent with its cytotoxic effect. Furthermore, 5r was proven to induce apoptosis in a dose-dependent manner similar to sorafenib. In addition, the prediction using SwissADME suggested that 5r possessed appropriate drug properties conforming to Veber's studies. These findings revealed that the newly designed meta-ureidophenoxy-1,2,3-triazole hybrid scaffold was a promising structural feature for an efficient inhibition of HepG2. Moreover, derivative 5r emerged as a promising candidate for further development as a targeted anti-cancer agent for hepatocellular carcinoma (HCC).


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Molecular Docking Simulation , Carcinoma, Hepatocellular/drug therapy , Sorafenib/pharmacology , Triazoles/pharmacology , Triazoles/chemistry , Drug Design , Structure-Activity Relationship , Cell Proliferation , Liver Neoplasms/drug therapy , Vascular Endothelial Growth Factor Receptor-2 , Antineoplastic Agents/chemistry , Molecular Structure , Drug Screening Assays, Antitumor
8.
Molecules ; 27(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35807445

ABSTRACT

2,5-Diketopiperazine derivatives, consisting of benzylidene and alkylidene substituents at 3 and 6 positions, have been considered as a core structure for their antiviral activities. Herein, the novel N-substituted 2,5-Diketopiperazine derivatives were successfully prepared and their antiviral activities against influenza virus were evaluated by monitoring viral propagation in embryonated chicken eggs. It was found that (3Z,6Z)-3-benzylidene-6-(2-methyl propylidene)-4-substituted-2,5-Diketopiperazines (13b-d), (3Z,6E)-3-benzylidene-6-(2-methylpropyli dene)-1-(1-ethyl pyrrolidine)-2,5-Diketopiperazine (14c), and Lansai-C exhibited negative results in influenza virus propagation at a concentration of 25 µg/mL. Additionally, molecular docking study revealed that 13b-d and 14c bound in 430-cavity of neuraminidase from H5N2 avian influenza virus and the synthesized derivatives also strongly interacted with the key amino acid residues, including Arg371, Pro326, Ile427, and Thr439.


Subject(s)
Influenza A Virus, H5N2 Subtype , Influenza, Human , Animals , Antiviral Agents/chemistry , Diketopiperazines/pharmacology , Humans , Molecular Docking Simulation , Molecular Structure , Neuraminidase/chemistry
9.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35631331

ABSTRACT

Target cancer drug therapy is an alternative treatment for advanced hepatocellular carcinoma (HCC) patients. However, the treatment using approved targeted drugs has encountered a number of limitations, including the poor pharmacological properties of drugs, therapy efficiency, adverse effects, and drug resistance. As a consequence, the discovery and development of anti-HCC drug structures are therefore still in high demand. Herein, we designed and synthesized a new series of 1,2,3-triazole-cored structures incorporating aryl urea as anti-HepG2 agents. Forty-nine analogs were prepared via nucleophilic addition and copper-catalyzed azide-alkyne cycloaddition (CuAAC) with excellent yields. Significantly, almost all triazole-cored analogs exhibited less cytotoxicity toward normal cells, human embryonal lung fibroblast cell MRC-5, compared to Sorafenib and Doxorubicin. Among them, 2m' and 2e exhibited the highest selectivity indexes (SI = 14.7 and 12.2), which were ca. 4.4- and 3.7-fold superior to that of Sorafenib (SI = 3.30) and ca. 3.8- and 3.2-fold superior to that of Doxorubicin (SI = 3.83), respectively. Additionally, excellent inhibitory activity against hepatocellular carcinoma HepG2, comparable to Sorafenib, was still maintained. A cell-cycle analysis and apoptosis induction study suggested that 2m' and 2e likely share a similar mechanism of action to Sorafenib. Furthermore, compounds 2m' and 2e exhibit appropriate drug-likeness, analyzed by SwissADME. With their excellent anti-HepG2 activity, improved selectivity indexes, and appropriate druggability, the triazole-cored analogs 2m' and 2e are suggested to be promising candidates for development as targeted cancer agents and drugs used in combination therapy for the treatment of HCC.

10.
Gels ; 8(4)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35448132

ABSTRACT

Vancomycin hydrochloride (HCl) is a glycopeptide antibiotic used to treat serious or life-threatening infections, and it reduces plaque scores and gingivitis in periodontal patients. In this study, vancomycin HCl was incorporated into rosin in situ forming gel (ISG) and rosin in situ forming microparticles (ISM) to generate a local drug delivery system to treat periodontal disease. The physical properties of the ISG and ISM were measured, including pH, viscosity, injectability, adhesion properties, in-vitro transformation, and drug release. Moreover, the effectiveness of antimicrobial activity was tested using the agar-cup diffusion method against Staphylococcus aureus, Streptococcus mutans, Porphyromonas gingivalis, and Escherichia coli. Vancomycin HCl-loaded rosin-based ISG and ISM had a pH value in the range of 5.02−6.48 and exhibited the ease of injection with an injection force of less than 20 N. Additionally, the lubricity effect of the external oil phase of ISM promoted less work of injection than ISG and 40−60% rosin-based ISM showed good emulsion stability. The droplet size of emulsions containing 40%, 50%, and 60% rosin was 98.48 ± 16.11, 125.55 ± 4.75, and 137.80 ± 16.8 µm, respectively. Their obtained microparticles were significantly smaller in diameter, 78.63 ± 12.97, 93.81 ± 10.53, and 118.32 ± 15.61 µm, respectively, because the particles shrank due to the solvent loss from solvent exchange. Moreover, increasing the concentration of rosin increased the size of microparticles. After phase transformation, all formulations had better plasticity properties than elasticity; therefore, they could easily adapt to the specific shape of a patient's gum cavity. Both developed ISG and ISM presented inhibition zones against S. mutans and P. gingivalis, with ISG presenting significantly more effectively against these two microbes (p < 0.05). The vancomycin HCl-loaded rosin ISG and ISM delayed drug release for 7 days with efficient antimicrobial activities; thus, they exhibit potential as the drug delivery systems for periodontitis treatment.

11.
Enzyme Microb Technol ; 154: 109956, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34871822

ABSTRACT

The ß-mannanase from Bacillus subtilis HM7 (Man26HM7) isolated from Dynastes hercules larvae excrement was cloned and expressed in Escherichia coli. Biochemical characterization shows that optimal pH and temperature for catalysis are 6.0 and 50 °C, respectively. Man26HM7 displayed excellent surfactant stability by retaining 70% of initial activity in 1%(w/v) SDS, and more than 90% of initial activity in 1%(w/v) Triton X-100 and Tween 80. Results from amino acid sequence alignment and molecular modeling suggest residue 238 of ß-mannanase as a hotspot of SDS-tolerance. Mutagenesis at the equivalent residue of another homolog, ß-mannanase from Bacillus subtilis CAe24 (Man26CAe24), significantly enhanced the SDS stability of this enzyme. Comparative computational analysis, including molecular docking and molecular dynamics simulation, were then performed to compute the binding free energy of SDS to Man26HM7, Man26CAe24, and variant enzymes. The results suggest that residue 238 of Man26HM7 is involved in SDS binding to the hydrophobic surface of ß-mannanase. This study provides not only the promising application of Man26HM7 in detergent and cleaning products but also valuable information for enhancing the surfactant stability of ß-mannanase by enzyme engineering.


Subject(s)
Surface-Active Agents , beta-Mannosidase , Animals , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Cloning, Molecular , Enzyme Stability , Hydrogen-Ion Concentration , Larva/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , beta-Mannosidase/genetics , beta-Mannosidase/metabolism
12.
Oncol Rep ; 47(1)2022 Jan.
Article in English | MEDLINE | ID: mdl-34738622

ABSTRACT

Due to drug resistance and disease recurrence, lung cancer remains one of the primary cancer­related causes of death in both men and women worldwide. In addition, lung cancer is clinically silent and thus most patients are at an advanced stage at the time of diagnosis. The limited efficiency of current conventional chemotherapies necessitates the search for novel effective anticancer agents. The present study demonstrated the anti­proliferative effect and apoptosis­inducing activity of three sesquiterpene lactones isolated from Gymnanthemum extensum, vernodalin (VDa), vernolepin (VLe) and vernolide (VLi), on A549 human lung cancer cells. Treatment with sub­cytotoxic doses (cell viability remaining >75%) of VDa, VLe and VLi, arrested progression of the A549 cell cycle at the G0/G1 phase, while cytotoxic doses of the three compounds induced G2/M phase arrest and apoptosis. Mechanistic studies revealed that VDa, VLe and VLi may exert their anti­tumor activity through the JAK2/STAT3 pathway. Molecular docking analysis confirmed that VDa, VLe and VLi formed hydrogen bonds with the FERM domain of JAK2 protein. Overall, the present study highlighted the potential therapeutic value of VDa, VLe and VLi to be further developed as anticancer agents for the treatment of lung cancer.


Subject(s)
Carcinoma/drug therapy , Janus Kinase 2/metabolism , Lactones/pharmacology , Lung Neoplasms/drug therapy , Plant Extracts/pharmacology , STAT3 Transcription Factor/metabolism , Sesquiterpenes/pharmacology , A549 Cells , Apoptosis/drug effects , Cell Cycle/drug effects , Cytostatic Agents/pharmacology , Humans , Molecular Docking Simulation
13.
J Hazard Mater ; 418: 126242, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34329012

ABSTRACT

A new fluorescence probe based on [5]helicene derivative (MT) was designed and synthesized. The chemical structure of the probe was fully characterized by NMR, mass spectrometry and X-ray crystallography. MT which is the combination of thioamide[5]helicene with Schiff base-thiophene moiety, exhibited a high selectivity to detect Hg2+ through irreversible desulfurization reaction with "TurnON" fluorescence response and large Stokes shift of 110 nm in aqueous methanol solution. The detection limit of MT was 1.2 ppb (6.0 × 10-3 µM), which is lower than the limit of Hg2+ level in drinking water, as specified by WHO (6.0 ppb) and U.S. EPA (2.0 ppb). The Hg2+ detection range of the probe was 0.07-1.6 µM with good linearity. Under UV irradiation, MT possessed the capability to detect Hg2+ in diverse context of real samples, including drinking and sea waters, vegetable tissue and brain tumor cell. In addition, MT could be used as a paper test strip for monitoring and screening of Hg2+ contamination in environment.


Subject(s)
Drinking Water , Mercury , Drinking Water/analysis , Fluorescent Dyes , Limit of Detection , Mercury/analysis , Polycyclic Compounds , Spectrometry, Fluorescence , Water
14.
Molecules ; 26(6)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809679

ABSTRACT

A series of novel coumarin-3-carboxamide derivatives were designed and synthesized to evaluate their biological activities. The compounds showed little to no activity against gram-positive and gram-negative bacteria but specifically showed potential to inhibit the growth of cancer cells. In particular, among the tested compounds, 4-fluoro and 2,5-difluoro benzamide derivatives (14b and 14e, respectively) were found to be the most potent derivatives against HepG2 cancer cell lines (IC50 = 2.62-4.85 µM) and HeLa cancer cell lines (IC50 = 0.39-0.75 µM). The activities of these two compounds were comparable to that of the positive control doxorubicin; especially, 4-flurobenzamide derivative (14b) exhibited low cytotoxic activity against LLC-MK2 normal cell lines, with IC50 more than 100 µM. The molecular docking study of the synthesized compounds revealed the binding to the active site of the CK2 enzyme, indicating that the presence of the benzamide functionality is an important feature for anticancer activity.


Subject(s)
Coumarins/chemical synthesis , Coumarins/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Cell Line , Cell Line, Tumor , Doxorubicin/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , HeLa Cells , Hep G2 Cells , Humans , Microbial Sensitivity Tests/methods , Molecular Docking Simulation/methods
15.
Bioorg Chem ; 112: 104831, 2021 07.
Article in English | MEDLINE | ID: mdl-33831675

ABSTRACT

A series of 1,2,3-triazole-containing Sorafenib analogues, in which the aryl urea moiety of Sorafenib (1) was replaced with a 1,2,3-triazole ring linking a substituted phenoxy fragment, were prepared successfully via Huisgen 1,3-dipolar cycloaddition and nucleophilic aromatic substitution. The studies of cytotoxicity towards human hepatocellular carcinoma (HCC) cell lines, HepG2 and Huh7, indicated that p-tert-butylphenoxy analogue 2m showed significant inhibitory activity against Huh7 with IC50 = 5.67 ± 0.57 µM. More importantly, 2m showed low cytotoxicity against human embryonal lung fibroblast cell line, MRC-5, with IC50 > 100 µM, suggesting its highly selective cytotoxic activity (SI > 17.6) towards Huh7 which is much superior to that of Sorafenib (SI = 6.73). The molecular docking studies revealed that the analogue 2m bound B-RAF near the binding position of Sorafenib, while it interacted VEGFR2 efficiently at the same binding position of Sorafenib. However, 2m exhibited moderate inhibitory activity toward B-RAF, implying that its anti-Huh7 effect might not strictly relate to inhibition of B-RAF. Wound healing and BrdU cell proliferation assays confirmed anti-cell migration and anti-cell proliferative activities towards Huh7. With its inhibitory efficiency and high safety profile, 2m has been identified as a promising candidate for the treatment of HCC.


Subject(s)
Antineoplastic Agents/pharmacology , Sorafenib/pharmacology , Triazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Sorafenib/chemical synthesis , Sorafenib/chemistry , Structure-Activity Relationship , Triazoles/chemistry , Wound Healing/drug effects
16.
J Hazard Mater ; 409: 124487, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33199148

ABSTRACT

Cadmium highly toxic and hazardous, and it can adversely affect human health leading to serious disorders. Herein, a water-soluble near-infrared sensor based on aza-BODIPY (1) was developed for dual determination of Cd2+ in environmental and biological media. This sensor exhibited color change from colorless to green along with a fluorescence enhancement in the near-infrared (NIR) region via photoinduced electron transfer (PET) after complexation with Cd2+. Sensor 1 can be employed in aqueous media at physiological pH for quantitative monitoring. It shows rapid response with high sensitivity (detection limit of 2.8 ppb; linear correlation over [Cd2+] 1.33 - 6.67 µM) and selectivity over potentially interfering ions. NIR sensor 1 can be used to determine [Cd2+] in living cells and environmental samples.


Subject(s)
Cadmium , Fluorescent Dyes , Boron Compounds , Cadmium/toxicity , Humans , Spectrometry, Fluorescence
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 240: 118606, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32629406

ABSTRACT

A near-infrared (NIR) colorimetric fluorescence sensor, Cy7C3, based on heptamethine cyanine dye was synthesized for determining the presence of Cu2+ ions. The sensor showed highly sensitive fluorescence quenching toward Cu2+ ions in acetonitrile/buffer solution at physiological pH with long emission wavelength of 718 nm. Cy7C3 also provided an excellent selectivity to Cu2+ ions over other competing metal ions, with a low detection limit of 9 ppb, which was lower than the maximum concentration of Cu2+ ions in drinking water of U.S. EPA. Cy7C3 could achieve naked-eye detection of Cu2+ ions via the color change from blue to colorless, which allowed determination of Cu2+ ions in hydroponic fertilizers. Additionally, the sensor was developed to detect Cu2+ ions in HepG2 cancer cells via fluorescence imaging.


Subject(s)
Copper , Fluorescent Dyes , Colorimetry , Limit of Detection , Spectrometry, Fluorescence
18.
Chempluschem ; 84(3): 252-259, 2019 03.
Article in English | MEDLINE | ID: mdl-31950759

ABSTRACT

A near-infrared chemodosimeter based on an aza-BODIPY dye was designed and synthesized. The sensor contains isothiocyanate groups for cyanide ion sensing. The sensing function was illustrated via the fluorescence changes in near-infrared frequencies as well as chromogenic changes which could be easily visualized with a detection limit of 19 ppb. The sensor provides high selectivity to CN- and discriminates other anions such as CH3 COO- , HPO4- , HSO4- , ClO3- , CO32- , SO42- , NO3- , Cl- , F- , Br- , I- , and phenylalanine (Phe) in 50 % PBS buffer/acetonitrile at physiological pH. The potential of the sensor for CN- detection in both aqueous buffer solutions and living cells imaging was demonstrated.


Subject(s)
Boron Compounds/chemistry , Cyanides/analysis , Fluorescent Dyes/chemistry , Isothiocyanates/chemistry , Animals , Boron Compounds/chemical synthesis , Boron Compounds/toxicity , Cell Line , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/toxicity , Isothiocyanates/chemical synthesis , Isothiocyanates/toxicity , Limit of Detection , Mice , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Spectrometry, Fluorescence/methods , Water Pollutants, Chemical/analysis
19.
ACS Sens ; 3(5): 1016-1023, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29733581

ABSTRACT

A new fluorescent sensor, M201-DPA, based on [5]helicene derivative was utilized as dual-analyte sensor for determination of Cu2+ or Zn2+ in different media and different emission wavelengths. The sensor could provide selective and bifunctional determination of Cu2+ in HEPES buffer containing Triton-X100 and Zn2+ in Tris buffer/methanol without interference from each other and other ions. In HEPES buffer, M201-DPA demonstrated the selective ON-OFF fluorescence quenching at 524 nm toward Cu2+. On the other hand, in Tris buffer/methanol, M201-DPA showed the selective OFF-ON fluorescence enhancement upon the addition of Zn2+, which was specified by the hypsochromic shift at 448 nm. Additionally, M201-DPA showed extremely large Stokes shifts up to ∼150 nm. By controlling the concentration of Zn2+ and Cu2+ in a living cell, the imaging of a HepG2 cellular system was performed, in which the fluorescence of M201-DPA in the blue channel was decreased upon addition of Cu2+ and was enhanced in UV channel upon addition of Zn2+. The detection limits of M201-DPA for Cu2+ and Zn2+ in buffer solutions were 5.6 and 3.8 ppb, respectively. Importantly, the Cu2+ and Zn2+ detection limits of the developed sensors were significantly lower than permitted Cu2+ and Zn2+ concentrations in drinking water as established by the U.S. EPA and WHO.


Subject(s)
Buffers , Copper/analysis , Drinking Water/chemistry , Fluorescent Dyes/chemistry , Polycyclic Compounds/chemistry , Zinc/analysis , Hep G2 Cells , Humans , Limit of Detection , Spectrometry, Fluorescence
20.
Dalton Trans ; 46(46): 16251-16256, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29138771

ABSTRACT

A near-infrared (NIR) fluorescent sensor 1 composed of an aza-boron-dipyrromethene (aza-BODIPY) core covalently bound to two di-2-picolylamine moieties was conceived for Cu2+ detection in aqueous solutions. Spectroscopic properties and binding abilities with several metal ions were investigated in phosphate buffered saline (pH 7.4): acetonitrile (95 : 5 v/v) with Triton X-100 via fluorometric titrations. The fluorescence of sensor 1 was quenched selectively by cupric ions in the presence of alkali- and transition-metal-ions. A detection limit of 13 ppb was measured for this system, and this is significantly lower than permissible levels of Cu2+ in drinking water according to the guidelines described by the U.S. Environmental Protection Agency (EPA) and by the World Health Organization (WHO). Application of the sensor in detecting Cu2+ in HepG2 cells was demonstrated.


Subject(s)
Aza Compounds/chemistry , Boron Compounds/chemistry , Copper/analysis , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence , Boron , Fluorometry , Hep G2 Cells , Humans , Limit of Detection , Metals/chemistry , Microscopy, Fluorescence , Molecular Conformation , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...