Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Sci Total Environ ; 806(Pt 4): 151414, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34742970

ABSTRACT

Wastewater treatment plants, the last barrier between ever-increasing human activities and the environment, produce huge amounts, of unwanted semi-solid by-product - waste activated sludge. Anaerobic digestion can be used to reduce the amount of sludge. However, the process needs extensive modernisation and refinement to realize its full potential. This can be achieved by using efficient pre-treatment processes that result in high sludge disintegration and solubilization. To this end, we investigated the efficiency of a novel pinned disc rotational generator of hydrodynamic cavitation. The results of physical and chemical evaluation showed a reduction in mean particle size up to 88%, an increase in specific surface area up to 300% and an increase in soluble COD, NH4-N, NO3-N, PO4-P up to 155.8, 126.3, 250 and 29.7%, respectively. Microscopic images confirmed flocs disruption and damage to yeast cells and Epistilys species due to mechanical effects of cavitation such as microjets and shear forces. The observed cell ruptures and cracks were sufficient for the release of small soluble biologically relevant dissolved organic molecules into the bulk liquid, but not for the release of microbial DNA. Cavitation treatment also decreased total Pb concentrations by 70%, which was attributed to the reactions triggered by the chemical effects of cavitation. Additionally, the study confirmed the presence of microplastic particles and fibers of polyethylene, polyethylene terephthalate, polypropylene, and nylon 6 in the waste activated sludge.


Subject(s)
Microplastics , Sewage , Anaerobiosis , Humans , Hydrodynamics , Plastics , Waste Disposal, Fluid , Wastewater
2.
Materials (Basel) ; 14(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34683699

ABSTRACT

A developed methodology for determining the physical properties of mineral fibers prepared from different input mixtures under the same spinning wheel conditions is described and discussed. Energy dispersive X-ray fluorescence spectroscopy was combined with simultaneous thermal analysis and thermogravimetry to study the mineralogical composition and typical melting and crystallization temperatures. The mechanical properties measured with nanoindentation were related to the mineralogical properties and the results obtained are in agreement with the literature. The developed methodology shows reliable performance and demonstrates the ability to study the mechanical properties of mineral fibers, their mineralogical composition, and thermal properties. The presented experimental methodology opens up the possibility of researching the mechanical properties of mineral fibers for the purpose of defining production recipes in the field of mineral thermal insulation materials.

3.
Ultrason Sonochem ; 77: 105669, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34303127

ABSTRACT

In this study, the hydrodynamic cavitation and wastewater treatment performance of a rotary generator with pin disk for hydrodynamic cavitation are investigated. Various geometrical features and arrangements of rotor and stator pins were evaluated to improve the configuration of the cavitation device. The pilot device used to perform the experiments was upgraded with a transparent cover that allows visualization of the hydrodynamic cavitation in the rotor-stator region with high-speed camera and simultaneous measurement of pressure fluctuations. Based on the hydrodynamic characteristics, three arrangements were selected and evaluated with respect to the chemical effects of cavitation on a 200-liter wastewater influent sample. The experimental results show that the rotational speed and the spacing of the rotor pins have the most significant effect on the cavitation intensity and effectiveness, while the pin diameter and the surface roughness are less significant design parameters. Cavitation intensity increases with pin velocity, but can be inhibited if the pins are arranged too close together. At best configuration, COD was reduced by 31% in 15 liquid passes, consuming 8.2 kWh/kg COD. The number of liquid passes also proved to be an important process parameter for improving the energy efficiency.

4.
Ultrason Sonochem ; 72: 105431, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33383544

ABSTRACT

This study investigates hydrodynamic performance of a novel pinned disc rotating generator of hydrodynamic cavitation in comparison with a serrated disc variant on a pilot-scale. Experimental results show that at a given rotational speed and liquid flow rate, the pinned disc generates more intense cavitation (i.e. lower cavitation number, higher volume fraction of vapor and higher amplitude of pressure fluctuations) than the serrated disc, while also consuming less energy per liquid pass (i.e., higher flow rate and pumping pressure difference of water at similar power consumption). Additionally, mechanical and chemical wastewater treatment performance of the novel cavitator was evaluated on an 800 L influent sample from a wastewater treatment plant. Mechanical effects resulted in a reduction of average particle size from 148 to 38 µm and increase of specific surface area, while the oxidation potential was confirmed by reduction of COD, TOC, and BOD up to 27, 23 and 30% in 60 cavitation passes, respectively. At optimal operating conditions and 30 cavitation passes, pinned disc cavitator had a 310% higher COD removal capacity while consuming 65% less energy per kg of COD removed than the serrated disc cavitator. Furthermore, the specific COD-reduction energy consumption of the pinned disc cavitator on the pilot scale is comparable to the best cases of lab-scale orifice and venturi devices operating at much lower wastewater processing capacity.

5.
J Sport Health Sci ; 8(1): 89-92, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30719388

ABSTRACT

BACKGROUND: Infrared thermographic imaging (IRTG) is a safe and reliable technology used to monitor skin temperature. The main aim of our study was to evaluate the relationship between skin temperature changes and muscle fatigue in order to answer the main research question if IRTG can be used to monitor muscle fatigue. METHODS: This was a case study performed on a 23-year-old trained middle distance runner. After warm-up the subject was exercising on the dynamometer for 7.5 min at 120°/s performing only concentric contractions of quadriceps. At the same time IRTG recording of both (exercising and non-exercising) quadriceps was performed. RESULTS: A correlational analysis that was performed in order to quantify the relationship between power and temperature change over time has shown that there is a significant negative correlation between skin temperature increase and power decrease (r = -0.543, p = 0.036) of exercising quadriceps. In linear regression model the exercising quadriceps power could be predicted from skin temperature. No such relationships were noted for the non-exercising limb that served as a control. CONCLUSION: We believe that correlation between skin temperature change and muscle power output as described in this case study deserves further analysis on the larger sample including subjects of the different ages, health status, and physical abilities in order to create a new tool for monitoring the muscle fatigue.

6.
Appl Opt ; 57(15): 4202-4210, 2018 May 20.
Article in English | MEDLINE | ID: mdl-29791394

ABSTRACT

This paper presents an optical method and system for contactless measurement of the mass flow rate of melts by digital cameras. The proposed method is based on reconstruction of melt stream geometry and flow velocity calculation by cross correlation, and is very cost-effective due its modest hardware requirements. Using a laboratory test rig with a small inductive melting pot and reference mass flow rate measurement by weighing, the proposed method was demonstrated to have an excellent dynamic response (0.1 s order of magnitude) while producing deviations from the reference of about 5% in the steady-state flow regime. Similar results were obtained in an industrial stone wool production line for two repeated measurements. Our method was tested in a wide range of melt flow rates (0.05-1.2 kg/s) and did not require very fast cameras (120 frames per second would be sufficient for most industrial applications).

7.
J Biomech ; 63: 117-124, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28865707

ABSTRACT

Obstructive sleep apnoea syndrome (OSAS) is a breathing disorder with a multifactorial etiology. The respiratory epithelium is lined with a thin layer of airway surface liquid preventing interactions between the airflow and epithelium. The effect of the liquid lining in OSAS pathogenesis remains poorly understood despite clinical research. Previous studies have shown that the physical properties of the airway surface liquid or altered stimulation of the airway mechanoreceptors could alleviate or intensify OSAS; however, these studies do not provide a clear physical interpretation. To study the forces transmitted from the airflow to the liquid-lined compliant wall and to discuss the effects of the airway surface liquid properties on the stimulation of the mechanoreceptors, a novel and simplified experimental system mimicking the upper airway fundamental characteristics (i.e., liquid-lined compliant wall and complex unsteady airflow features) was constructed. The fluctuating force on the compliant wall was reduced through a damping mechanism when the liquid film thickness and/or the viscosity were increased. Conversely, the liquid film damping was reduced when the surface tension decreased. Based on the experimental data, empirical correlations were developed to predict the damping potential of the liquid film. In the future, this will enable us to extend the existing computational fluid-structure interaction simulations of airflow in the human upper airway by incorporating the airway surface liquid effect without adopting two-phase flow interface tracking methods. Furthermore, the experimental system developed in this study could be used to investigate the fundamental principles of the complex once/twice-coupled physical phenomena.


Subject(s)
Pharynx/physiopathology , Biomechanical Phenomena , Humans , Models, Biological , Respiratory Mucosa/physiopathology , Respiratory Physiological Phenomena , Sleep Apnea, Obstructive/physiopathology , Sodium Dodecyl Sulfate/chemistry , Solutions , Surface Tension , Surface-Active Agents/chemistry , Viscosity
8.
Ultrasonics ; 81: 178-186, 2017 11.
Article in English | MEDLINE | ID: mdl-28711033

ABSTRACT

This paper presents a novel non-contact method for simultaneous analysis of pressure and velocity conditions in cavitating flows. The method (implemented in our software ADMflow) is based on high-speed camera flow visualization and was evaluated in an experiment with ultrasonically induced acoustic cavitation of different intensities. Attached cavitation with clearly visible cavitation structures occurred on the tip of an ultrasonic probe immersed in distilled water. Using the high-speed imaging data, pressure fluctuations were calculated by a computer-aided algorithm based on the Brennen's theory of cavitation cloud kinematics and a modified version of the Rayleigh-Plesset equation. Reference measurements of pressure pulsations were conducted by a hydrophone installed at the bottom of the liquid container. The analysis of cavitation structure dynamics was complemented by calculation of velocity fields from the imaging data, the algorithm for which is based on the advection-diffusion equation. Calculated pressure fluctuations were analyzed in the spatial, temporal and spectral domain. Presented results indicate a strong correlation between the fields of velocity and pressure fluctuations during the growth and collapse of cavitation structures. A comparison of time series and power spectra demonstrates that our cavitation analysis method is in a reasonably good agreement with results of the reference measurement methods and can therefore be used for non-contact analysis of pressure and velocity conditions in cavitating flows.

9.
Ultrason Sonochem ; 29: 577-88, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26515938

ABSTRACT

The use of acoustic cavitation for water and wastewater treatment (cleaning) is a well known procedure. Yet, the use of hydrodynamic cavitation as a sole technique or in combination with other techniques such as ultrasound has only recently been suggested and employed. In the first part of this paper a general overview of techniques that employ hydrodynamic cavitation for cleaning of water and wastewater is presented. In the second part of the paper the focus is on our own most recent work using hydrodynamic cavitation for removal of pharmaceuticals (clofibric acid, ibuprofen, ketoprofen, naproxen, diclofenac, carbamazepine), toxic cyanobacteria (Microcystis aeruginosa), green microalgae (Chlorella vulgaris), bacteria (Legionella pneumophila) and viruses (Rotavirus) from water and wastewater. As will be shown, hydrodynamic cavitation, like acoustic, can manifest itself in many different forms each having its own distinctive properties and mechanisms. This was until now neglected, which eventually led to poor performance of the technique. We will show that a different type of hydrodynamic cavitation (different removal mechanism) is required for successful removal of different pollutants. The path to use hydrodynamic cavitation as a routine water cleaning method is still long, but recent results have already shown great potential for optimisation, which could lead to a low energy tool for water and wastewater cleaning.


Subject(s)
Acoustics , Hydrodynamics , Wastewater , Water Purification/methods , Animals , Humans , Wastewater/chemistry , Wastewater/microbiology , Wastewater/virology , Water Pollutants, Chemical/isolation & purification
10.
Appl Opt ; 54(26): 7978-84, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26368973

ABSTRACT

This paper presents a temperature evaluation method by means of high-speed, visible light digital camera visualization and its application to the mineral wool production process. The proposed method adequately resolves the temperature-related requirements in mineral wool production and significantly improves the spatial and temporal resolution of measured temperature fields. Additionally, it is very cost effective in comparison with other non-contact temperature field measurement methods, such as infrared thermometry. Using the proposed method for temperatures between 800°C and 1500°C, the available temperature measurement range is approximately 300 K with a single temperature calibration point and without the need for camera setting adjustments. In the case of a stationary blackbody, the proposed method is able to produce deviations of less than 5 K from the reference (thermocouple-measured) temperature in a measurement range within 100 K from the calibration temperature. The method was also tested by visualization of rotating melt film in the rock wool production process. The resulting temperature fields are characterized by a very good temporal and spatial resolution (18,700 frames per second at 128 pixels×328 pixels and 8000 frames per second at 416 pixels×298 pixels).

11.
Sci Total Environ ; 527-528: 465-73, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-25981944

ABSTRACT

Cytostatic drug residues in the aqueous environment are of concern due to their possible adverse effects on non-target organisms. Here we report the occurrence and removal efficiency of cyclophosphamide (CP) and ifosfamide (IF) by biological and abiotic treatments including advanced oxidation processes (AOPs). Cyclophosphamide was detected in hospital wastewaters (14-22,000 ng L(-1)), wastewater treatment plant influents (19-27 ng L(-1)) and effluent (17 ng L(-1)), whereas IF was detected only in hospital wastewaters (48-6800 ng L(-1)). The highest removal efficiency during biological treatment (attached growth biomass in a flow through bioreactor) was 59 ± 15% and 35 ± 9.3% for CP and IF, respectively. Also reported are the removal efficiencies of both compounds from wastewater using hydrodynamic cavitation (HC), ozonation (O3) and/or UV, either individually or in combination with hydrogen peroxide (H2O2). Hydrodynamic cavitation did not remove CP and IF to any significant degree. The highest removal efficiencies: 99 ± 0.71% for CP and 94 ± 2.4% for IF, were achieved using UV/O3/H2O2 at 5 g L(-1) for 120 min. When combined with biological treatment, removal efficiencies were >99% for both compounds. This is the first report of combined biological and AOP treatment of CP and IF from wastewater with a removal efficiency >99%.


Subject(s)
Cyclophosphamide/analysis , Ifosfamide/analysis , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Biological Products , Bioreactors
12.
Ultrason Sonochem ; 26: 408-414, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25596776

ABSTRACT

The disintegration of raw sludge is very important for enhancement of the biogas production in anaerobic digestion process as it provides easily degradable substrate for microorganisms to perform maximum sludge treatment efficiency and stable digestion of sludge at lower costs. In the present study the disintegration was studied by using a novel rotation generator of hydrodynamic cavitation (RGHC). At the first stage the analysis of hydrodynamics of the RGHC were made with tap water, where the cavitation extent and aggressiveness was evaluated. At the second stage RGHC was used as a tool for pretreatment of a waste-activated sludge (WAS), collected from wastewater treatment plant (WWTP). In case of WAS the disintegration rate was measured, where the soluble chemical oxygen demand (SCOD) and soluble Kjeldahl nitrogen were monitored and microbiological pictures were taken. The SCOD increased from initial 45 mg/L up to 602 mg/L and 12.7% more biogas has been produced by 20 passes through RGHC. The results were obtained on a pilot bioreactor plant, volume of 400 L.


Subject(s)
Hydrodynamics , Sewage/chemistry , Waste Disposal, Fluid/methods , Feasibility Studies , Rotation , Waste Disposal, Fluid/economics , Waste Disposal, Fluid/instrumentation
13.
Ultrason Sonochem ; 21(3): 1213-21, 2014 May.
Article in English | MEDLINE | ID: mdl-24286658

ABSTRACT

In this study, the removal of clofibric acid, ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac residues from wastewater, using a novel shear-induced cavitation generator has been systematically studied. The effects of temperature, cavitation time and H2O2 dose on removal efficiency were investigated. Optimisation (50°C; 15 min; 340 mg L(-1) of added H2O2) resulted in removal efficiencies of 47-86% in spiked deionised water samples. Treatment of actual wastewater effluents revealed that although matrix composition reduces removal efficiency, this effect can be compensated for by increasing H2O2 dose (3.4 g L(-1)) and prolonging cavitation time (30 min). Hydrodynamic cavitation has also been investigated as either a pre- or a post-treatment step to biological treatment. The results revealed a higher overall removal efficiency of recalcitrant diclofenac and carbamazepine, when hydrodynamic cavitation was used prior to as compared to post biological treatment i.e., 54% and 67% as compared to 39% and 56%, respectively. This is an important finding since diclofenac is considered as a priority substance to be included in the EU Water Framework Directive.


Subject(s)
Cities , Hydrodynamics , Mechanical Phenomena , Pharmaceutical Preparations/isolation & purification , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Hydrogen Peroxide/chemistry , Temperature , Time Factors
14.
Ultrason Sonochem ; 20(4): 1104-12, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23352585

ABSTRACT

To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation-hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid. Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip™ and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip™ carriers (85%±10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74%±22% and 48%±19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3-70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment resulted in removal efficiencies of >90% for clofibric acid and >98% for carbamazepine and diclofenac, while the remaining compounds were reduced to levels below the LOD. For ibuprofen, naproxen, ketoprofen and diclofenac the highest contribution to overall removal was attributed to biological treatment, for clofibric acid UV treatment was the most efficient, while for carbamazepine hydrodynamic cavitation/hydrogen peroxide process and UV treatment were equally efficient.


Subject(s)
Hydrodynamics , Pharmaceutical Preparations/isolation & purification , Ultraviolet Rays , Water Pollutants, Chemical/isolation & purification , Biomass , Hydrogen Peroxide/chemistry , Sewage/chemistry
15.
J Gravit Physiol ; 9(1): P187-8, 2002 Jul.
Article in English | MEDLINE | ID: mdl-15002541

ABSTRACT

The present study evaluated whether the previously reported alterations in core temperature circadian rhythm associated with bed rest might be attributable to increased heat loss from the skin. Infra-red thermograms were obtained at weekly intervals during 5 weeks of bed rest and after 4 weeks of active recovery. Tympanic temperature (Tty) was measured at hourly intervals from 0800 to 2300 hrs on similar occasions during bed rest. There were no significant changes in mean tympanic temperature or amplitude of Tty circadian rhythm during the 5 week bed rest period. Skin temperature decreased progressively during bed rest (P<0.005), with distal regions being the most affected.

SELECTION OF CITATIONS
SEARCH DETAIL