Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2663, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531970

ABSTRACT

The gain and loss of genes fluctuate over evolutionary time in major eukaryotic clades. However, the full profile of these macroevolutionary trajectories is still missing. To give a more inclusive view on the changes in genome complexity across the tree of life, here we recovered the evolutionary dynamics of gene family gain and loss ranging from the ancestor of cellular organisms to 352 eukaryotic species. We show that in all considered lineages the gene family content follows a common evolutionary pattern, where the number of gene families reaches the highest value at a major evolutionary and ecological transition, and then gradually decreases towards extant organisms. This supports theoretical predictions and suggests that the genome complexity is often decoupled from commonly perceived organismal complexity. We conclude that simplification by gene family loss is a dominant force in Phanerozoic genomes of various lineages, probably underpinned by intense ecological specializations and functional outsourcing.


Subject(s)
Biological Evolution , Genome , Phylogeny , Evolution, Molecular
2.
Int J Mol Sci ; 24(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36982667

ABSTRACT

Borreliella (syn. Borrelia) burgdorferi is a spirochete bacterium that causes tick-borne Lyme disease. Along its lifecycle B. burgdorferi develops several pleomorphic forms with unclear biological and medical relevance. Surprisingly, these morphotypes have never been compared at the global transcriptome level. To fill this void, we grew B. burgdorferi spirochete, round body, bleb, and biofilm-dominated cultures and recovered their transcriptomes by RNAseq profiling. We found that round bodies share similar expression profiles with spirochetes, despite their morphological differences. This sharply contrasts to blebs and biofilms that showed unique transcriptomes, profoundly distinct from spirochetes and round bodies. To better characterize differentially expressed genes in non-spirochete morphotypes, we performed functional, positional, and evolutionary enrichment analyses. Our results suggest that spirochete to round body transition relies on the delicate regulation of a relatively small number of highly conserved genes, which are located on the main chromosome and involved in translation. In contrast, spirochete to bleb or biofilm transition includes substantial reshaping of transcription profiles towards plasmids-residing and evolutionary young genes, which originated in the ancestor of Borreliaceae. Despite their abundance the function of these Borreliaceae-specific genes is largely unknown. However, many known Lyme disease virulence genes implicated in immune evasion and tissue adhesion originated in this evolutionary period. Taken together, these regularities point to the possibility that bleb and biofilm morphotypes might be important in the dissemination and persistence of B. burgdorferi inside the mammalian host. On the other hand, they prioritize the large pool of unstudied Borreliaceae-specific genes for functional characterization because this subset likely contains undiscovered Lyme disease pathogenesis genes.


Subject(s)
Borrelia burgdorferi , Lyme Disease , Animals , Humans , Bacterial Proteins/metabolism , Borrelia burgdorferi/genetics , Borrelia burgdorferi/metabolism , Lyme Disease/genetics , Mammals/metabolism , Transcriptome
3.
Sci Rep ; 12(1): 21120, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36476631

ABSTRACT

In nature, bacteria prevailingly reside in the form of biofilms. These elaborately organized surface-bound assemblages of bacterial cells show numerous features of multicellular organization. We recently showed that biofilm growth is a true developmental process, which resembles developmental processes in multicellular eukaryotes. To study the biofilm growth in a fashion of eukaryotic ontogeny, it is essential to define dynamics and critical transitional phases of this process. The first step in this endeavor is to record the gross morphological changes of biofilm ontogeny under standardized conditions. This visual information is instrumental in guiding the sampling strategy for the later omics analyses of biofilm ontogeny. However, none of the currently available visualizations methods is specifically tailored for recording gross morphology across the whole biofilm development. To address this void, here we present an affordable Arduino-based approach for time-lapse visualization of complete biofilm ontogeny using bright field stereomicroscopy with episcopic illumination. The major challenge in recording biofilm development on the air-solid interphase is water condensation, which compromises filming directly through the lid of a Petri dish. To overcome these trade-offs, we developed an Arduino microcontroller setup which synchronizes a robotic arm, responsible for opening and closing the Petri dish lid, with the activity of a stereomicroscope-mounted camera and lighting conditions. We placed this setup into a microbiological incubator that maintains temperature and humidity during the biofilm growth. As a proof-of-principle, we recorded biofilm development of five Bacillus subtilis strains that show different morphological and developmental dynamics.


Subject(s)
Bacteria , Microscopy , Time-Lapse Imaging
4.
Mol Biol Evol ; 38(1): 31-47, 2021 01 04.
Article in English | MEDLINE | ID: mdl-32871001

ABSTRACT

Correspondence between evolution and development has been discussed for more than two centuries. Recent work reveals that phylogeny-ontogeny correlations are indeed present in developmental transcriptomes of eukaryotic clades with complex multicellularity. Nevertheless, it has been largely ignored that the pervasive presence of phylogeny-ontogeny correlations is a hallmark of development in eukaryotes. This perspective opens a possibility to look for similar parallelisms in biological settings where developmental logic and multicellular complexity are more obscure. For instance, it has been increasingly recognized that multicellular behavior underlies biofilm formation in bacteria. However, it remains unclear whether bacterial biofilm growth shares some basic principles with development in complex eukaryotes. Here we show that the ontogeny of growing Bacillus subtilis biofilms recapitulates phylogeny at the expression level. Using time-resolved transcriptome and proteome profiles, we found that biofilm ontogeny correlates with the evolutionary measures, in a way that evolutionary younger and more diverged genes were increasingly expressed toward later timepoints of biofilm growth. Molecular and morphological signatures also revealed that biofilm growth is highly regulated and organized into discrete ontogenetic stages, analogous to those of eukaryotic embryos. Together, this suggests that biofilm formation in Bacillus is a bona fide developmental process comparable to organismal development in animals, plants, and fungi. Given that most cells on Earth reside in the form of biofilms and that biofilms represent the oldest known fossils, we anticipate that the widely adopted vision of the first life as a single-cell and free-living organism needs rethinking.


Subject(s)
Bacillus subtilis/physiology , Biofilms , Biological Evolution , Bacillus subtilis/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...