Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Acoust Soc Am ; 154(2): 863-873, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37566719

ABSTRACT

The larval and post-larval forms of many marine organisms, such as oysters, crabs, lobster, coral, and fish, utilize ambient acoustic cues to orient, settle, or metamorphose. In this study, the effect of anthropogenic and ambient sounds on the orientation behavior of four larval estuarine fishes was examined in a controlled, laboratory experiment. Pre-settlement size red drum Sciaenops ocellatus, southern flounder Paralichthys lethostigma, spotted seatrout Cynoscion nebulosus, and Florida blenny Chasmodes saburrae larvae were exposed to four sound treatments-control, estuarine soundscape, seismic airguns, and large-ship passage-in a linear acoustic chamber. Initial significant (p < 0.05) avoidance of airguns was observed in three of the four species (all but the Florida blenny), but habituation to this sound occurred as the experiment progressed. All species avoided ship passage sounds; however, the avoidance behavior was not significant. Interestingly, none of the species studied were significantly attracted to the acoustic cues alone of the estuarine soundscape; in fact, three of the four species spent less time near the speaker when it was broadcast. These results suggest that larval fish can potentially habituate to anthropogenic noise relatively quickly (<10 min). Understanding how sounds affect larval behavior is necessary because successful recruitment ultimately affects a population's success.


Subject(s)
Noise , Perciformes , Animals , Noise/adverse effects , Fishes , Sound , Larva , Acoustics
2.
J Acoust Soc Am ; 151(5): 3052, 2022 05.
Article in English | MEDLINE | ID: mdl-35649949

ABSTRACT

Four species of grouper (family Epinephlidae), Red Hind (Epinephelus guttatus), Nassau (Epinephelus striatus), Black (Mycteroperca bonaci), and Yellowfin Grouper (Mycteroperca venenosa) share an aggregation site in Little Cayman, Cayman Islands and produce sounds while aggregating. Continuous observation of these aggregations is challenging because traditional diver or ship-based methods are limited in time and space. Passive acoustic localization can overcome this challenge for sound-producing species, allowing observations over long durations and at fine spatial scales. A hydrophone array was deployed in February 2017 over a 9-day period that included Nassau Grouper spawning. Passive acoustic localization was used to find positions of the grouper-produced calls recorded during this time, which enabled the measurement of call source levels and evaluation of spatiotemporal aspects of calling. Yellowfin Grouper had the lowest mean peak-to-peak (PP) call source level, and Nassau Grouper had the highest mean PP call source level (143.7 and 155.2 dB re: 1 µPa at 1 m for 70-170 Hz, respectively). During the days that Nassau Grouper spawned, calling peaked after sunset. Similarly, when Red Hind calls were abundant, calls were highest in the afternoon and evening. The measured source levels can be used to estimate communication and detection ranges and implement passive acoustic density estimation for these fishes.


Subject(s)
Bass , Sound Localization , Acoustics , Animals , Sound
3.
PLoS One ; 17(4): e0266469, 2022.
Article in English | MEDLINE | ID: mdl-35363831

ABSTRACT

Worldwide, the frequency (pitch) of blue whale (Balaenoptera musculus) calls has been decreasing since first recorded in the 1960s. This frequency decline occurs over annual and inter-annual timescales and has recently been documented in other baleen whale species, yet it remains unexplained. In the Northeast Pacific, blue whales produce two calls, or units, that, when regularly repeated, are referred to as song: A and B calls. In this population, frequency decline has thus far only been examined in B calls. In this work, passive acoustic data collected in the Southern California Bight from 2006 to 2019 were examined to determine if A calls are also declining in frequency and whether the call pulse rate was similarly impacted. Additionally, frequency measurements were made for B calls to determine whether the rate of frequency decline is the same as was calculated when this phenomenon was first reported in 2009. We found that A calls decreased at a rate of 0.32 Hz yr-1 during this period and that B calls were still decreasing, albeit at a slower rate (0.27 Hz yr-1) than reported previously. The A call pulse rate also declined over the course of the study, at a rate of 0.006 pulses/s yr-1. With this updated information, we consider the various theories that have been proposed to explain frequency decline in blue whales. We conclude that no current theory adequately accounts for all aspects of this phenomenon and consider the role that individual perception of song frequency may play. To understand the cause behind call frequency decline, future studies might want to explore the function of these songs and the mechanism for their synchronization. The ubiquitous nature of the frequency shift phenomenon may indicate a consistent level of vocal plasticity and fine auditory processing abilities across baleen whale species.


Subject(s)
Balaenoptera , Vocalization, Animal , Acoustics , Adaptation, Physiological , Animals , Balaenoptera/physiology , California , Pacific Ocean , Time Factors , Vocalization, Animal/classification
4.
PLoS One ; 17(3): e0264214, 2022.
Article in English | MEDLINE | ID: mdl-35271610

ABSTRACT

Song is produced by a variety of terrestrial and marine animals and is particularly common among baleen whales. Fin whale (Balaenoptera physalus) song is comprised of relatively simple 20 Hz pulses produced at regular intervals. The timing of these intervals, in addition to the presence and frequency of overtones, appears to be unique to each population. The purpose of this study was to characterize Western Antarctic Peninsula fin whale song and describe temporal pattern variations in song type and occurrence. Recordings were collected in the area from 2001-2004 and again 2014-2016. One song type was identified with a primary inter-pulse interval (IPI) of approximately 14 s and secondary IPI of 12.5 s. This song occurred in three pattern variants: singlet, doublet, and long triplet. The interval between pulses increased by 1.5 s between recording periods while the frequency of the overtones decreased from 89 Hz to 86 Hz. Song was never recorded in August and while it was recorded at other times in some years, it was consistently present in recordings from April through June across all years. While multiple pattern variants were present each year, singlets were generally the most prevalent variant. Doublets and triplets occurred from February through June, with highest levels of variants in February. In later years the triplet variant presence increased and in 2016 it comprised 53% of recorded song bouts. Further research is needed to understand the reasons why song changes over time and to examine the feasibility of using song to delineate and identify populations.


Subject(s)
Fin Whale , Animals , Antarctic Regions , Seasons , Vocalization, Animal
5.
J Acoust Soc Am ; 149(5): 3635, 2021 05.
Article in English | MEDLINE | ID: mdl-34241118

ABSTRACT

Passive acoustic monitoring has proven to be an indispensable tool for many aspects of baleen whale research. Manual detection of whale calls on these large data sets demands extensive manual labor. Automated whale call detectors offer a more efficient approach and have been developed for many species and call types. However, calls with a large level of variability such as fin whale (Balaenoptera physalus) 40 Hz call and blue whale (B. musculus) D call have been challenging to detect automatically and hence no practical automated detector exists for these two call types. Using a modular approach consisting of faster region-based convolutional neural network followed by a convolutional neural network, we have created automated detectors for 40 Hz calls and D calls. Both detectors were tested on recordings with high- and low density of calls and, when selecting for detections with high classification scores, they were shown to have precision ranging from 54% to 57% with recall ranging from 72% to 78% for 40 Hz and precision ranging from 62% to 64% with recall ranging from 70 to 73% for D calls. As these two call types are produced by both sexes, using them in long-term studies would remove sex-bias in estimates of temporal presence and movement patterns.


Subject(s)
Balaenoptera , Fin Whale , Acoustics , Animals , Neural Networks, Computer , Vocalization, Animal
6.
J R Soc Interface ; 18(180): 20210297, 2021 07.
Article in English | MEDLINE | ID: mdl-34283944

ABSTRACT

Many animals rely on long-form communication, in the form of songs, for vital functions such as mate attraction and territorial defence. We explored the prospect of improving automatic recognition performance by using the temporal context inherent in song. The ability to accurately detect sequences of calls has implications for conservation and biological studies. We show that the performance of a convolutional neural network (CNN), designed to detect song notes (calls) in short-duration audio segments, can be improved by combining it with a recurrent network designed to process sequences of learned representations from the CNN on a longer time scale. The combined system of independently trained CNN and long short-term memory (LSTM) network models exploits the temporal patterns between song notes. We demonstrate the technique using recordings of fin whale (Balaenoptera physalus) songs, which comprise patterned sequences of characteristic notes. We evaluated several variants of the CNN + LSTM network. Relative to the baseline CNN model, the CNN + LSTM models reduced performance variance, offering a 9-17% increase in area under the precision-recall curve and a 9-18% increase in peak F1-scores. These results show that the inclusion of temporal information may offer a valuable pathway for improving the automatic recognition and transcription of wildlife recordings.


Subject(s)
Neural Networks, Computer , Animals , Time Factors
7.
R Soc Open Sci ; 7(10): 192112, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33204440

ABSTRACT

The recent identification of the bio-duck call as Antarctic minke whale (AMW) vocalization allows the use of passive acoustic monitoring to retrospectively investigate year-round spatial-temporal patterns in minke whale occurrence in ice-covered areas. Here, we present an analysis of AMW occurrence patterns based on a 9-year passive acoustic dataset (2008-2016) from 21 locations throughout the Atlantic sector of the Southern Ocean (Weddell Sea). AMWs were detected acoustically at all mooring locations from May to December, with the highest presence between August and November (bio-duck calls present at more than 80% of days). At the southernmost recording locations, the bio-duck call was present up to 10 months of the year. Substantial inter-annual variation in the seasonality of vocal activity correlated to variation in local ice concentration. Our analysis indicates that part of the AMW population stays in the Weddell Sea during austral winter. The period with the highest acoustic presence in the Weddell Sea (September-October) coincides with the timing of the breeding season of AMW in lower latitudes. The bio-duck call could therefore play a role in mating, although other behavioural functions of the call cannot be excluded to date.

8.
Sci Rep ; 10(1): 7710, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32382054

ABSTRACT

Blue whales need to time their migration from their breeding grounds to their feeding grounds to avoid missing peak prey abundances, but the cues they use for this are unknown. We examine migration timing (inferred from the local onset and cessation of blue whale calls recorded on seafloor-mounted hydrophones), environmental conditions (e.g., sea surface temperature anomalies and chlorophyll a), and prey (spring krill biomass from annual net tow surveys) during a 10 year period (2008-2017) in waters of the Southern California Region where blue whales feed in the summer. Colder sea surface temperature anomalies the previous season were correlated with greater krill biomass the following year, and earlier arrival by blue whales. Our results demonstrate a plastic response of blue whales to interannual variability and the importance of krill as a driving force behind migration timing. A decadal-scale increase in temperature due to climate change has led to blue whales extending their overall time in Southern California. By the end of our 10-year study, whales were arriving at the feeding grounds more than one month earlier, while their departure date did not change. Conservation strategies will need to account for increased anthropogenic threats resulting from longer times at the feeding grounds.


Subject(s)
Animal Migration/physiology , Balaenoptera/physiology , Feeding Behavior/physiology , Oceans and Seas , Animals , Biomass , California , Climate Change , Euphausiacea/physiology , Humans , Seasons , Temperature
9.
R Soc Open Sci ; 5(8): 180241, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30225013

ABSTRACT

Acoustic communication is an important aspect of reproductive, foraging and social behaviours for many marine species. Northeast Pacific blue whales (Balaenoptera musculus) produce three different call types-A, B and D calls. All may be produced as singular calls, but A and B calls also occur in phrases to form songs. To evaluate the behavioural context of singular call and phrase production in blue whales, the acoustic and dive profile data from tags deployed on individuals off southern California were assessed using generalized estimating equations. Only 22% of all deployments contained sounds attributed to the tagged animal. A larger proportion of tagged animals were female (47%) than male (13%), with 40% of unknown sex. Fifty per cent of tags deployed on males contained sounds attributed to the tagged whale, while only a few (5%) deployed on females did. Most calls were produced at shallow depths (less than 30 m). Repetitive phrasing (singing) and production of singular calls were most common during shallow, non-lunging dives, with the latter also common during surface behaviour. Higher sound production rates occurred during autumn than summer and they varied with time-of-day: singular call rates were higher at dawn and dusk, while phrase production rates were highest at dusk and night.

10.
Sci Rep ; 7(1): 13460, 2017 10 18.
Article in English | MEDLINE | ID: mdl-29044130

ABSTRACT

Given new distribution patterns of the endangered North Atlantic right whale (NARW; Eubalaena glacialis) population in recent years, an improved understanding of spatio-temporal movements are imperative for the conservation of this species. While so far visual data have provided most information on NARW movements, passive acoustic monitoring (PAM) was used in this study in order to better capture year-round NARW presence. This project used PAM data from 2004 to 2014 collected by 19 organizations throughout the western North Atlantic Ocean. Overall, data from 324 recorders (35,600 days) were processed and analyzed using a classification and detection system. Results highlight almost year-round habitat use of the western North Atlantic Ocean, with a decrease in detections in waters off Cape Hatteras, North Carolina in summer and fall. Data collected post 2010 showed an increased NARW presence in the mid-Atlantic region and a simultaneous decrease in the northern Gulf of Maine. In addition, NARWs were widely distributed across most regions throughout winter months. This study demonstrates that a large-scale analysis of PAM data provides significant value to understanding and tracking shifts in large whale movements over long time scales.


Subject(s)
Acoustics , Whales , Animals , Atlantic Ocean , Geography , Population Dynamics , Spatial Analysis
11.
Sci Rep ; 7(1): 10126, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28860617

ABSTRACT

Songs are distinct, patterned sounds produced by a variety of animals including baleen whales. Fin whale songs, which consist of short pulses repeated at regular interpulse intervals (IPIs), have been suggested as a tool to distinguish populations. Fin whale songs were analyzed from data collected from 2000-2012 in Southern California and from 2004-2010 in the Gulf of California using autonomous acoustic recorders. IPIs were measured for each identifiable song sequence during two random days of each month with recordings. Four distinct song types were identified: long doublet, short doublet, long triplet, and short triplet. Long and short doublets were the dominant songs in Southern California, while long and short triplets were dominant in the Gulf of California. An abrupt change in song type occurred in both areas during the monitoring period. We argue that each song type is unique to a population and these changes represent a shift in the primary population in the monitoring area. Occasional temporal and spatial song overlap indicated some exchange or visitation among populations. Fin whales appear to synchronize and gradually modify song rhythm over long time scales. A better understanding of the evolutionary and ecological importance of songs to fin whale populations is needed.


Subject(s)
Biological Variation, Population , Fin Whale/physiology , Vocalization, Animal , Animals , California , Male
12.
J Acoust Soc Am ; 139(5): 2417, 2016 05.
Article in English | MEDLINE | ID: mdl-27250138

ABSTRACT

Comparisons of current and historic ocean ambient noise levels are rare, especially in the North Atlantic. Recent (2013-2014) monthly patterns in ocean ambient sound south of Bermuda were compared to those recorded at the same location in 1966. Additionally, trends in ocean traffic, in particular, Panama Canal traffic, over this time were also investigated. One year of ocean ambient noise measurements were collected in 1966 using cabled, omnidirectional hydrophones at the U.S. Navy Tudor Hill Laboratory in Bermuda, and repeat measurements were collected at the same location from June 2013-May 2014 using a High-frequency Acoustic Recording Package. Average monthly pressure spectrum levels at 44 Hz increased 2.8 ± 0.8 dB from 1966 to 2013, indicating an average increase of 0.6 dB/decade. This low level of increase may be due to topographic shielding at this site, limiting it to only southern exposure, and the limit in the number of ship transits through the Panama Canal, which did not change substantially during this time. The impending expansion of the Canal, which will enable the transit of larger ships at twice the current rate, is likely to lead to a substantial increase in ocean ambient sound at this location in the near future.

13.
Antonie Van Leeuwenhoek ; 109(7): 1063-9, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27108139

ABSTRACT

Using bacterial and fungal tag-encoded FLX-Titanium amplicon pyrosequencing, the microbiota of the faecal material of two blue whales living in the wild off the coast of California was investigated. In both samples the most predominant bacterial phylum was the Firmicutes with Clostridium spp. being the most dominant bacteria. The most predominant fungi were members of the phylum Ascomycota with Metschnikowia spp. being the most dominant. In this study, we also preliminarily characterised the culturable anaerobic bacteria from the faecal material, using traditional culture and 16S rRNA gene sequencing approaches. In total, three bacterial species belonging to the phylum Firmicutes were identified.


Subject(s)
Bacteria/classification , Balaenoptera/microbiology , Feces/microbiology , Fungi/classification , Animals , Bacteria/genetics , Bacteria/isolation & purification , Biodiversity , California , Fungi/genetics , Fungi/isolation & purification , Microbiota , Phylogeny , RNA, Bacterial/genetics , RNA, Fungal/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/veterinary , Sequence Analysis, RNA/veterinary
14.
PLoS One ; 10(9): e0139157, 2015.
Article in English | MEDLINE | ID: mdl-26402068

ABSTRACT

Anthropogenic noise in the ocean has increased substantially in recent decades, and motorized vessels produce what is likely the most common form of underwater noise pollution. Noise has the potential to induce physiological stress in marine fishes, which may have negative ecological consequences. In this study, physiological effects of increased noise (playback of boat noise recorded in the field) on a coastal marine fish (the giant kelpfish, Heterostichus rostratus) were investigated by measuring the stress responses (cortisol concentration) of fish to increased noise of various temporal dynamics and noise levels. Giant kelpfish exhibited acute stress responses when exposed to intermittent noise, but not to continuous noise or control conditions (playback of recorded natural ambient sound). These results suggest that variability in the acoustic environment may be more important than the period of noise exposure for inducing stress in a marine fish, and provide information regarding noise levels at which physiological responses occur.


Subject(s)
Ecosystem , Fishes/physiology , Noise , Stress, Physiological , Animals , Hydrocortisone/metabolism , Ships , Tape Recording , Time Factors
16.
PLoS One ; 9(12): e115678, 2014.
Article in English | MEDLINE | ID: mdl-25521493

ABSTRACT

Fin whale (Balaenoptera physalus) song consists of down-swept pulses arranged into stereotypic sequences that can be characterized according to the interval between successive pulses. As in blue (B. musculus) and humpback whales (Megaptera novaeangliae), these song sequences may be geographically distinct and may correlate with population boundaries in some regions. We measured inter-pulse intervals of fin whale songs within year-round acoustic datasets collected between 2000 and 2006 in three regions of the eastern North Pacific: Southern California, the Bering Sea, and Hawaii. A distinctive song type that was recorded in all three regions is characterized by singlet and doublet inter-pulse intervals that increase seasonally, then annually reset to the same shorter intervals at the beginning of each season. This song type was recorded in the Bering Sea and off Southern California from September through May and off Hawaii from December through April, with the song interval generally synchronized across all monitoring locations. The broad geographic and seasonal occurrence of this particular fin whale song type may represent a single population broadly distributed throughout the eastern Pacific with no clear seasonal migratory pattern. Previous studies attempting to infer population structure of fin whales in the North Pacific using synchronous individual song samples have been unsuccessful, likely because they did not account for the seasonal lengthening in song intervals observed here.


Subject(s)
Fin Whale/physiology , Seasons , Vocalization, Animal , Animals , Pacific Ocean
17.
J Acoust Soc Am ; 134(4): 2681-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24116406

ABSTRACT

Ocean ambient noise is well studied in the North Pacific and North Atlantic but is poorly described for most of the worlds' oceans. Calibrated passive acoustic recordings were collected during 2009-2010 at seven locations in the central and western tropical and subtropical Pacific. Monthly and hourly mean power spectra (15-1000 Hz) were calculated in addition to their skewness, kurtosis, and percentile distributions. Overall, ambient noise at these seven sites was 10-20 dB lower than reported recently for most other locations in the North Pacific. At frequencies <100 Hz, spectrum levels were equivalent to those predicted for remote or light shipping. Noise levels in the 40 Hz band were compared to the presence of nearby and distant ships as reported to the World Meteorological Organization Voluntary Observing Ship Scheme (VOS) project. There was a positive, but nonsignificant correlation between distant shipping and low frequency noise (at 40 Hz). There was a seasonal variation in ambient noise at frequencies >200 Hz with higher levels recorded in the winter than in the summer. Several species of baleen whales, humpback (Megaptera novaeangliae), blue (Balaenoptera musculus), and fin (B. physalus) whales, also contributed seasonally to ambient noise in characteristic frequency bands.


Subject(s)
Acoustics , Noise, Transportation , Oceanography/methods , Ships , Vocalization, Animal , Whales/physiology , Animals , Environmental Monitoring/methods , Models, Theoretical , Pacific Ocean , Pressure , Seasons , Signal Processing, Computer-Assisted , Sound Spectrography , Time Factors
18.
Mar Biol ; 160(1): 47-57, 2013.
Article in English | MEDLINE | ID: mdl-24391281

ABSTRACT

Fin whales (Balaenoptera physalus) produce a variety of low-frequency, short-duration, frequency-modulated calls. The differences in temporal patterns between two fin whale call types are described from long-term passive acoustic data collected intermittently between 2005 and 2011 at three locations across the eastern North Pacific: the Bering Sea, off Southern California, and in Canal de Ballenas in the northern Gulf of California. Fin whale calls were detected at all sites year-round, during all periods with recordings. At all three locations, 40-Hz calls peaked in June, preceding a peak in 20-Hz calls by 3-5 months. Monitoring both call types may provide a more accurate insight into the seasonal presence of fin whales across the eastern North Pacific than can be obtained from a single call type. The 40-Hz call may be associated with a foraging function, and temporal separation between 40- and 20-Hz calls may indicate the separation between predominately feeding behavior and other social interactions.

19.
J Acoust Soc Am ; 122(2): 1208-15, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17672667

ABSTRACT

Blue (Balaenoptera musculus) and fin whales (B. physalus) produce high-intensity, low-frequency calls, which probably function for communication during mating and feeding. The source levels of blue and fin whale calls off the Western Antarctic Peninsula were calculated using recordings made with calibrated, bottom-moored hydrophones. Blue whales were located up to a range of 200 km using hyperbolic localization and time difference of arrival. The distance to fin whales, estimated using multipath arrivals of their calls, was up to 56 km. The error in range measurements was 3.8 km using hyperbolic localization, and 3.4 km using multipath arrivals. Both species produced high-intensity calls; the average blue whale call source level was 189+/-3 dB re:1 microPa-1 m over 25-29 Hz, and the average fin whale call source level was 189+/-4 dB re:1 microPa-1 m over 15-28 Hz. Blue and fin whale populations in the Southern Ocean have remained at low numbers for decades since they became protected; using source level and detection range from passive acoustic recordings can help in calculating the relative density of calling whales.


Subject(s)
Balaenoptera/physiology , Fin Whale/physiology , Vocalization, Animal/physiology , Animal Communication , Animals , Animals, Wild , Antarctic Regions , Models, Biological , Population Density , Seawater , Sound Localization/physiology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...