Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Sci Total Environ ; 892: 164818, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37315600

ABSTRACT

Global marine conservation remains fractured by an imbalance in research efforts and policy actions, limiting progression towards sustainability. Rhodolith beds represent a prime example, as they have ecological importance on a global scale, provide a wealth of ecosystem functions and services, including biodiversity provision and potential climate change mitigation, but remain disproportionately understudied, compared to other coastal ecosystems (tropical coral reefs, kelp forests, mangroves, seagrasses). Although rhodolith beds have gained some recognition, as important and sensitive habitats at national/regional levels during the last decade, there is still a notable lack of information and, consequently, specific conservation efforts. We argue that the lack of information about these habitats, and the significant ecosystem services they provide, is hindering the development of effective conservation measures and limiting wider marine conservation success. This is becoming a pressing issue, considering the multiple severe pressures and threats these habitats are exposed to (e.g., pollution, fishing activities, climate change), which may lead to an erosion of their ecological function and ecosystem services. By synthesizing the current knowledge, we provide arguments to highlight the importance and urgency of levelling-up research efforts focused on rhodolith beds, combating rhodolith bed degradation and avoiding the loss of associated biodiversity, thus ensuring the sustainability of future conservation programs.


Subject(s)
Biodiversity , Ecosystem , Coral Reefs , Environmental Pollution , Forests , Conservation of Natural Resources
3.
Sci Total Environ ; 729: 138745, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32498159

ABSTRACT

Marine climate change mitigation initiatives have recently attracted a great deal of interest in the role of natural carbon sinks, particularly on coastal systems. Brown seaweeds of the genus Sargassum are the largest canopy-forming algae in tropical and subtropical environments, with a wide global distribution on rocky reefs and as floating stands. Because these algae present high amounts of biomass, we suggest their contribution is relevant for global carbon stocks and consequently for mitigating climate change as CO2 remover. We modelled global distributions and quantified carbon stocks as above-ground biomass (AGB) with machine learning algorithms and climate data. Sargassum AGB totaled 13.1 Pg C at the global scale, which is a significant amount of carbon, comparable to other key marine ecosystems, such as mangrove forests, salt marshes and seagrass meadows. However, specific techniques related to bloom production and management, or the utilization of biomass for biomaterials, should be fostered.


Subject(s)
Climate Change , Sargassum , Biomass , Carbon , Carbon Sequestration , Forests , Trees , Tropical Climate
4.
J Phycol ; 54(3): 380-390, 2018 06.
Article in English | MEDLINE | ID: mdl-29505096

ABSTRACT

Mycosporine-like amino acids (MAA) are ultraviolet screen substances synthesized by marine algae. The physiological function of these substances is related to cellular protection against UV radiation and as a protective mechanism against oxidative stress. These substances can be found mainly in the ocean, among red seaweeds. Its concentration in organisms has been related to ultraviolet radiation and availability of inorganic nitrogen in the environment. We start our study of MAA content in different species to understand if environmental conditions influence the concentration of MAAs in red seaweeds. The Brazilian coast presents abiotic factors that interact to create different physical-chemical features in the environment. We collected 441 samples from 39 species of red seaweed easily found in the intertidal zone, in low tide, during the summer of 2015. The sampling encompassed a latitudinal gradient (3° S to 28°5' S) at 23 points along the coast. We quantified and identified the content of MAAs in species through the method of high performance liquid chromatography. We detected for the first time the occurrence of MAAs in certain species of red algae that have not been reported to contain MAAs before. We confirmed that some environmental factors influenced the content of MAAs. Enhanced MAA contents, for example, were found in environments with a basic pH, a high ultraviolet index, and high concentrations of phosphate and nitrate. Salinity, dissolved oxygen and variations of sea surface temperature also influenced, in a secondary way, MAA content in algae in their natural environments.


Subject(s)
Amino Acids/analysis , Environment , Rhodophyta/chemistry , Brazil , Seaweed/chemistry
5.
Rev. bras. farmacogn ; 22(4): 768-774, jul.-ago. 2012. tab
Article in English | LILACS | ID: lil-640358

ABSTRACT

Climate change can be associated with variations in the frequency and intensity of extreme temperatures and precipitation events on the local and regional scales. Along coastal areas, flooding associated with increased occupation has seriously impacted products and services generated by marine life, in particular the biotechnological potential that macroalgae hold. Therefore, this paper analyzes the available information on the taxonomy, ecology and physiology of macroalgae and discusses the impacts of climate change and local stress on the biotechnological potential of Brazilian macroalgae. Based on data compiled from a series of floristic and ecological works, we note the disappearance in some Brazilian regions of major groups of biotechnological interest. In some cases, the introduction of exotic species has been documented, as well as expansion of the distribution range of economically important species. We also verify an increase in the similarities between the Brazilian phycogeographic provinces, although they still remain different. It is possible that these changes have resulted from the warming of South Atlantic water, as observed for its surface in southeastern Brazilian, mainly during the winter. However, unplanned urbanization of coastal areas can also produce similar biodiversity losses, which requires efforts to generate long-term temporal data on the composition, community structure and physiology of macroalgae.

SELECTION OF CITATIONS
SEARCH DETAIL
...