Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 10(1): 21346, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33288809

ABSTRACT

Human plasma is a complex fluid, increasingly used for extracellular vesicle (EV) biomarker studies. Our aim was to find a simple EV-enrichment method for reliable quantification of EVs in plasma to be used as biomarker of disease. Plasma of ten healthy subjects was processed using sedimentation rate- (sucrose cushion ultracentrifugation-sUC) and size- (size exclusion chromatography-SEC) based methods. According to nanoparticle tracking analysis (NTA), asymmetrical flow field-flow fractionation coupled to detectors (AF4-UV-MALS), miRNA quantification, transmission electron microscopy and enzyme-linked immunosorbent assay, enrichment of EVs from plasma with sUC method lead to high purity of EVs in the samples. High nanoparticle concentrations after SEC resulted from substantial contamination with lipoproteins and other aggregates of EV-like sizes that importantly affect downstream EV quantification. Additionally, sUC EV-enrichment method linked to quantification with NTA or AF4-UV-MALS is repeatable, as the relative standard deviation of EV size measured in independently processed samples from the same plasma source was 5.4% and 2.1% when analyzed by NTA or AF4-UV-MALS, respectively. In conclusion, the sUC EV-enrichment method is compatible with reliable measurement of concentration and size of EVs from plasma and should in the future be tested on larger cohorts in relation to different diseases. This is one of the first studies using AF4-UV-MALS to quantify EVs in blood plasma, which opens new possible clinical utility for the technique.


Subject(s)
Biomarkers/analysis , Extracellular Vesicles/chemistry , Plasma/chemistry , Chromatography, Gel , Female , Fractionation, Field Flow , Humans , Male , Middle Aged , Nanoparticles/chemistry , Proteomics
2.
Cells ; 9(4)2020 04 14.
Article in English | MEDLINE | ID: mdl-32295162

ABSTRACT

The neurotropic and extremophilic black yeast Exophiala dermatitidis (Herpotrichellaceae) inhabits diverse indoor environments, in particular bathrooms, steam baths, and dishwashers. Here, we show that the selected strain, EXF-10123, is polymorphic, can grow at 37 °C, is able to assimilate aromatic hydrocarbons (toluene, mineral oil, n-hexadecane), and shows abundant growth with selected neurotransmitters (acetylcholine, gamma-aminobutyric acid, glycine, glutamate, and dopamine) as sole carbon sources. We have for the first time demonstrated the effect of E. dermatitidis on neuroblastoma cell model SH-SY5Y. Aqueous and organic extracts of E. dermatitidis biomass reduced SH-SY5Y viability by 51% and 37%, respectively. Melanized extracellular vesicles (EVs) prepared from this strain reduced viability of the SH-SY5Y to 21%, while non-melanized EVs were considerably less neurotoxic (79% viability). We also demonstrated direct interactions of E. dermatitidis with SH-SY5Y by scanning electron and confocal fluorescence microscopy. The observed invasion and penetration of neuroblastoma cells by E. dermatitidis hyphae presumably causes the degradation of most neuroblastoma cells in only three days. This may represent a so far unknown indirect or direct cause for the development of some neurodegenerative diseases such as Alzheimer's.


Subject(s)
Cell Death/physiology , Exophiala/pathogenicity , Neuroblastoma/microbiology , Humans
3.
Cells ; 8(9)2019 09 06.
Article in English | MEDLINE | ID: mdl-31500151

ABSTRACT

Extracellular vesicles (EVs) isolated from biological samples are a promising material for use in medicine and technology. However, the assessment methods that would yield repeatable concentrations, sizes and compositions of the harvested material are missing. A plausible model for the description of EV isolates has not been developed. Furthermore, the identity and genesis of EVs are still obscure and the relevant parameters have not yet been identified. The purpose of this work is to better understand the mechanisms taking place during harvesting of EVs, in particular the role of viscosity of EV suspension. The EVs were harvested from blood plasma by repeated centrifugation and washing of samples. Their size and shape were assessed by using a combination of static and dynamic light scattering. The average shape parameter of the assessed particles was found to be ρ ~ 1 (0.94-1.1 in exosome standards and 0.7-1.2 in blood plasma and EV isolates), pertaining to spherical shells (spherical vesicles). This study has estimated the value of the viscosity coefficient of the medium in blood plasma to be 1.2 mPa/s. It can be concluded that light scattering could be a plausible method for the assessment of EVs upon considering that EVs are a dynamic material with a transient identity.


Subject(s)
Blood Viscosity/physiology , Extracellular Vesicles/physiology , Specimen Handling/methods , Adult , Centrifugation/methods , Dynamic Light Scattering/methods , Exosomes/physiology , Female , Healthy Volunteers , Humans , Male , Middle Aged , Plasma/physiology , Viscosity
4.
Langmuir ; 34(30): 8983-8993, 2018 07 31.
Article in English | MEDLINE | ID: mdl-29983071

ABSTRACT

Understanding of the interactions between proteins and natural and artificially prepared lipid membrane surfaces and embedded nonpolar cores is important in studies of physiological processes and their pathologies and is applicable to nanotechnologies. In particular, rapidly growing interest in cellular droplets defines the need for simplified biomimetic lipid model systems to overcome in vivo complexity and variability. We present a protocol for the preparation of kinetically stable nanoemulsions with nanodroplets composed of sphingomyelin (SM) and cholesterol (Chol), as amphiphilic surfactants, and trioleoylglycerol (TOG), at various molar ratios. To prepare stable SM/Chol-coated monodisperse lipid nanodroplets, we modified a reverse phase evaporation method and combined it with ultrasonication. Lipid composition, ζ-potential, gyration and hydrodynamic radius, shape, and temporal stability of the lipid nanodroplets were characterized and compared to extruded SM/Chol large unilamellar vesicles. Lipid nanodroplets and large unilamellar vesicles with theoretical SM/Chol/TOG molar ratios of 1/1/4.7 and 4/1/11.7 were further investigated for the orientational order of their interfacial water molecules using a second harmonic scattering technique, and for interactions with the SM-binding and Chol-binding pore-forming toxins equinatoxin II and perfringolysin O, respectively. The surface characteristics (ζ-potential, orientational order of interfacial water molecules) and binding of these proteins to the nanodroplet SM/Chol monolayers were similar to those for the SM/Chol bilayers of the large unilamellar vesicles and SM/Chol Langmuir monolayers, in terms of their surface structures. We propose that such SM/Chol/TOG nanoparticles with the required lipid compositions can serve as experimental models for monolayer membrane to provide a system that imitates the natural lipid droplets.


Subject(s)
Cholesterol/chemistry , Lipids/chemistry , Nanostructures/chemistry , Proteins/metabolism , Sphingomyelins/chemistry , Protein Binding , Proteins/chemistry , Triolein/chemistry , Unilamellar Liposomes/chemistry , Water/chemistry
5.
Biochim Biophys Acta Biomembr ; 1860(6): 1350-1361, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29551275

ABSTRACT

PKH lipophilic dyes are highly fluorescent and stain membranes by intercalating their aliphatic portion into the exposed lipid bilayer. They have established use in labeling and tracking of cells in vivo and in vitro. Despite wide use of PKH-labeled extracellular vesicles (EVs) in cell targeting and functional studies, nonEV-associated fluorescent structures have never been examined systematically, nor was their internalization by cells. Here, we have characterized PKH26-positive particles in lymphoblastoid B exosome samples and exosome-free controls stained by ultracentrifugation, filtration, and sucrose-cushion-based and sucrose-gradient-based procedures, using confocal imaging and asymmetric-flow field-flow fractionation coupled to multi-angle light-scattering detector analysis. We show for the first time that numerous PKH26 nanoparticles (nine out of ten PKH26-positive particles) are formed during ultracentrifugation-based exosome staining, which are almost indistinguishable from PKH26-labeled exosomes in terms of size, surface area, and fluorescence intensity. When PKH26-labeled exosomes were purified through sucrose, PKH26 nanoparticles were differentiated from PKH26-labeled exosomes based on their reduced size. However, PKH26 nanoparticles were only physically removed from PKH26-labeled exosomes when separated on a sucrose gradient, and at the expense of low PKH26-labeled exosome recovery. Overall, low PKH26-positive particle recovery is characteristic of filtration-based exosome staining. Importantly, PKH26 nanoparticles are internalized by primary astrocytes into similar subcellular compartments as PKH26-labeled exosomes. Altogether, PKH26 nanoparticles can result in false-positive signals for stained EVs that can compromise the interpretation of EV internalization. Thus, for use in EV uptake and functional studies, sucrose-gradient-based isolation should be the method of choice to obtain PKH26-labeled exosomes devoid of PKH26 nanoparticles.


Subject(s)
Exosomes/metabolism , Fluorescent Dyes/metabolism , Nanoparticles/metabolism , Organic Chemicals/metabolism , Staining and Labeling/methods , Animals , Astrocytes/metabolism , Centrifugation, Density Gradient , Exosomes/ultrastructure , Female , Flow Cytometry , Fluorescent Dyes/analysis , Microscopy, Confocal , Organic Chemicals/analysis , Rats , Ultracentrifugation
6.
Anal Chem ; 89(21): 11744-11752, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-28974097

ABSTRACT

An asymmetrical flow field-flow fractionation (AF4) technique coupled to a multiangle light scattering (MALS) detector with an embedded dynamic light scattering (DLS) module was introduced to study the size characteristics and shape of soft particles of various size and type: polystyrene nanosphere size standards, lipid droplets (LDs), and large unilamellar vesicles (LUVs). A range of flow velocities through the LS detector, at which accurate hydrodynamic size can be extracted from the DLS in flow mode, was studied since the particles subjected to a longitudinal flow exhibit not only the Brownian motion due to diffusion but also the translational movement. In addition, the impact of the longitudinal flow velocity on the shape of the artificial LUV of two different sizes and two different compositions was studied by MALS. For comparison, the conventional batch DLS and static light scattering (SLS) experiments without prior sample separation by size were performed. From a combination of batch and flow light scattering results, we concluded that the passage flow velocities at the detector used in this study, 0.2, 0.5, and 1 mL/min, have no significant impact on the shape of spherical vesicles; however, the flow DLS experiments give accurate hydrodynamic radius (Rh) only at the lowest investigated passage flow rate at the detector (0.2 mL/min). With increasing rate of passage flow at the DLS detector, the error in the accuracy of the Rh determination rapidly increases. The error in Rh depends solely on the detector flow rate and particle size but not on the type of the soft particle.

7.
Acta Chim Slov ; 62(3): 546-54, 2015.
Article in English | MEDLINE | ID: mdl-26454588

ABSTRACT

Properties of isotactic polymethacrylic acid, iPMA, chains were studied at 25°C in aqueous solutions at various CsCl concentrations, c(s) (= 0.05-0.20 M), in dependence on degree of neutralization of the polyion's carboxyl groups, α(N), using static, SLS, and dynamic light scattering, DLS, measurements. It was demonstrated that iPMA chains with α(N) somewhat above the solubility limit of iPMA in aqueous solutions (in the present case at α(N) ≈ 0.27) are strongly aggregated. The size of the aggregates increases with increasing c(s), whereas the shape parameter, ρ, is approximately constant (ρ ≈ 0.6), irrespective of c(s). The low ρ value suggests that the aggregates have characteristics of microgel particles with a dense core surrounded by a less dense corona. The diffusion of iPMA chains was investigated also at higher α(N), up to α(N) = 1. The polyion slow mode arising from electrostatic interactions between charged chains was observed for α(N) exceeding the value 0.27 even at the highest c(s) (= 0.20 M). The diffusion coefficients for the show mode were nearly independent of α(N) and cs at the studied polymer concentration.

8.
J Chromatogr A ; 1418: 185-191, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26409772

ABSTRACT

Asymmetric-flow field-flow fractionation technique coupled to a multi-angle light-scattering detector (AF4-MALS) was used together with dynamic light-scattering (DLS) in batch mode and transmission electron microscopy (TEM) to study the size characteristics of the trioleoylglycerol lipid droplets covered by a monolayer of sphingomyelin and cholesterol, in water phase. These lipid droplet nanoemulsions (LD) were formed by ultrasonication. In parallel, the size characteristics of large unilamellar lipid vesicles (LUV) prepared by extrusion and composed of sphingomyelin and cholesterol were determined. LD and LUV were prepared at two different molar ratios (1/1, 4/1) of sphingomyelin and cholesterol. In AF4-MALS, various cross-flow conditions and mobile phase compositions were tested to optimize the separation of LD or LUV particles. The particle radii, R, as well as the root-mean-square radii, Rrms, of LD and LUV were determined by AF4-MALS, whereas the hydrodynamic radii, Rh, were obtained by DLS. TEM visualization revealed round shape particles of LD and LUV.


Subject(s)
Cholesterol/chemistry , Lipid Droplets/chemistry , Sphingomyelins/chemistry , Triolein/chemistry , Unilamellar Liposomes/chemistry , Dynamic Light Scattering , Fractionation, Field Flow/methods , Light , Microscopy, Electron, Transmission , Particle Size , Scattering, Radiation , Water/chemistry
9.
Anal Chem ; 87(18): 9225-33, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26291637

ABSTRACT

In the past few years extracellular vesicles called exosomes have gained huge interest of scientific community since they show a great potential for human diagnostic and therapeutic applications. However, an ongoing challenge is accurate size characterization and quantification of exosomes because of the lack of reliable characterization techniques. In this work, the emphasis was focused on a method development to size-separate, characterize, and quantify small amounts of exosomes by asymmetrical-flow field-flow fractionation (AF4) technique coupled to a multidetection system (UV and MALS). Batch DLS (dynamic light-scattering) and NTA (nanoparticle tracking analysis) analyses of unfractionated exosomes were also conducted to evaluate their shape and internal structure, as well as their number density. The results show significant influence of cross-flow conditions and channel thickness on fractionation quality of exosomes, whereas the focusing time has less impact. The AF4/UV-MALS and DLS results display the presence of two particles subpopulations, that is, the larger exosomes and the smaller vesicle-like particles, which coeluted in AF4 together with impurities in early eluting peak. Compared to DLS and AF4-MALS results, NTA somewhat overestimates the size and the number density for larger exosome population, but it discriminates the smaller particle population.


Subject(s)
Exosomes/chemistry , Fractionation, Field Flow/methods , Cell Line , Humans , Nanoparticles/analysis , Time Factors
10.
Soft Matter ; 10(39): 7712-22, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25137480

ABSTRACT

A comparative light-scattering study of isotactic and atactic poly(methacrylic acid), iPMA and aPMA, respectively, in aqueous solutions with added alkali chlorides, XCl (X = Li, Na, Cs), at 25 °C and XCl concentration of 0.1 mol L(-1), demonstrates that both PMA isomers are strongly associated at low degrees of neutralization, αN (= 0 for aPMA and 0.25 for iPMA), in the presence of all XCls. The shape parameter ρ and the scattering functions suggest that aggregates have the characteristics of microgel particles, with a dense core surrounded by a less dense shell. The extent of aggregation depends on the stereoregular structure of the polymer and on the type of the added cation. Li(+) and Na(+) ions support aggregation better than Cs(+) ions. Besides, iPMA chains are more strongly aggregated than aPMA chains and form particles with a denser core. A model of the aggregation process is suggested for iPMA. At high αN, a slow diffusive process (so-called extraordinary or anomalous mode in diffusion of polyelectrolytes), arising from electrostatic interactions between charged chains, is observed for both PMAs. Results suggest that under the same experimental conditions iPMA is effectively more charged than aPMA. The role of ions in the slow-mode phenomenon is less pronounced than in aggregation.

11.
J Phys Chem B ; 116(15): 4634-45, 2012 Apr 19.
Article in English | MEDLINE | ID: mdl-22435529

ABSTRACT

Mixtures of polyelectrolytes and oppositely charged surfactants show very rich phase behavior that is influenced by surfactant-ion and polyion properties and by water content. A general feature is associative phase separation as a result of strong electrostatic interactions, whereas the effect of eventual more specific interactions (e.g., hydrophobic) has not been thoroughly investigated. In this paper, we report a detailed study on phase behavior and structures in poly(styrenesulfonate anion) (PSS(-))-cetyltrimethylammonium cation (CTA(+))-water mixtures that are characterized by a hydrophobic interaction between the styrene groups of PSS(-) and the micelle interior. Structures of various phases were determined by small-angle X-ray scattering, and results indicated the presence of a disordered micellar and an ordered hexagonal phase; no cubic phase was found. The general conclusion is that the highlighted hydrophobic interaction promotes dissolution of CTAPSS when the polyion salt is added and provides further stabilization of the dense phase when the surfactant salt is added.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Polystyrenes/chemistry , Quaternary Ammonium Compounds/chemistry , Water/chemistry , Ions/chemistry , Molecular Structure , Phase Transition , Surface-Active Agents/chemistry
12.
Acta Chim Slov ; 59(3): 503-12, 2012 Sep.
Article in English | MEDLINE | ID: mdl-24061303

ABSTRACT

Aqueous phase behavior and structures of phases were studied in systems containing sodium poly(styrenesulfonate), NaPSS, and complex salt CTAPSS, formed between cetyltrimethylammonium cations, CTA+, and PSS- anions. It was shown that hydrophobic interaction of the polyion styrene groups with surfactant aggregates, which supports the strong electrostatic attraction between CTA+ and PSS-, has a significant effect on phase behavior and structures. Only the disordered micellar (L1) and the ordered hexagonal (H1) phase were found that are connected over a broad two-phase region of L1-H1 coexistence. At water contents above 60 wt%, CTAPSS is easily dissolved in proportion to the amount of added NaPSS, whereas at lower water contents a large excess of NaPSS is needed to dissolve CTAPSS. Phase separation in the two-phase region is controlled by two tendencies: (i) to maximize the contact between the hydrophobic groups and micelles (assisted by hydrophobic interaction) and (ii) to form as dense phase as possible (assisted by both, electrostatic and hydrophobic interactions). Structural characteristics of soluble non-stoichiometric complexes from the L1 phase show that hydrophobic interaction contributes also to a relatively small size of PSS-induced micelles and leads to a network-like association between PSS chains in which micelles serve as cross-links.

SELECTION OF CITATIONS
SEARCH DETAIL
...