Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiome ; 19(1): 15, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468324

ABSTRACT

BACKGROUND: Poriferans (sponges) are highly adaptable organisms that can thrive in diverse marine and freshwater environments due, in part, to their close associations with internal microbial communities. This sponge microbiome can be acquired from the surrounding environment (horizontal acquisition) or obtained from the parents during the reproductive process through a variety of mechanisms (vertical transfer), typically resulting in the presence of symbiotic microbes throughout all stages of sponge development. How and to what extent the different components of the microbiome are transferred to the developmental stages remain poorly understood. Here, we investigated the microbiome composition of a common, low-microbial-abundance, Atlantic-Mediterranean sponge, Crambe crambe, throughout its ontogeny, including adult individuals, brooded larvae, lecithotrophic free-swimming larvae, newly settled juveniles still lacking osculum, and juveniles with a functional osculum for filter feeding. RESULTS: Using 16S rRNA gene analysis, we detected distinct microbiome compositions in each ontogenetic stage, with variations in composition, relative abundance, and diversity of microbial species. However, a particular dominant symbiont, Candidatus Beroebacter blanensis, previously described as the main symbiont of C. crambe, consistently occurred throughout all stages, an omnipresence that suggests vertical transmission from parents to offspring. This symbiont fluctuated in relative abundance across developmental stages, with pronounced prevalence in lecithotrophic stages. A major shift in microbial composition occurred as new settlers completed osculum formation and acquired filter-feeding capacity. Candidatus Beroebacter blanensis decreased significatively at this point. Microbial diversity peaked in filter-feeding stages, contrasting with the lower diversity of lecithotrophic stages. Furthermore, individual specific transmission patterns were detected, with greater microbial similarity between larvae and their respective parents compared to non-parental conspecifics. CONCLUSIONS: These findings suggest a putative vertical transmission of the dominant symbiont, which could provide some metabolic advantage to non-filtering developmental stages of C. crambe. The increase in microbiome diversity with the onset of filter-feeding stages likely reflects enhanced interaction with environmental microbes, facilitating horizontal transmission. Conversely, lower microbiome diversity in lecithotrophic stages, prior to filter feeding, suggests incomplete symbiont transfer or potential symbiont digestion. This research provides novel information on the dynamics of the microbiome through sponge ontogeny, on the strategies for symbiont acquisition at each ontogenetic stage, and on the potential importance of symbionts during larval development.

2.
Zootaxa ; 3760: 141-79, 2014 Jan 31.
Article in English | MEDLINE | ID: mdl-24870077

ABSTRACT

The sponge fauna from the deep shelf (70 to 200 m) of the Alboran Island (Alboran Sea, Western Mediterranean) was investigated using a combination of ROV surveys and collecting devices in the frame of the EC LIFE+ INDEMARES Grant aimed to designate marine areas of the Nature 2000 Network within Spanish territorial waters. From ROV surveys and 351 examined specimens, a total of 87 sponge species were identified, most belonging in the Class Demospongiae, and one belonging in the Class Hexactinellida. Twenty six (29%) species can be regarded as either taxonomically or faunistically relevant. Three of them were new to science (Axinella alborana nov. sp.; Axinella spatula nov. sp.; Endectyon filiformis nov. sp.) and 4 others were Atlantic species recorded for the first time in the Mediterranean Sea (Jaspis eudermis Lévi & Vacelet, 1958; Hemiasterella elongata Topsent, 1928; Axinella vellerea Topsent, 1904; Gelliodes fayalensis Topsent, 1892). Another outstanding finding was a complete specimen of Rhabdobaris implicata Pulitzer-Finali, 1983, a species only known from its holotype, which had entirely been dissolved for its description. Our second record of the species has allowed a neotype designation and a restitution of the recently abolished genus Rhabdobaris Pulitzer-Finally, 1983, also forcing a slight modification of the diagnosis of the family Bubaridae. Additionally, 12 species were recorded for the first time from the shelf of the Alboran Island, including a few individuals of the large hexactinellid Asconema setubalense Kent, 1877 that provided the second Mediterranean record of this "North Atlantic" hexactinellid. ROV explorations also revealed that sponges are an important component of the deep-shelf benthos, particularly on rocky bottoms, where they make peculiar sponge gardens characterized by a wide diversity of small, erect species forming a dense "undergrowth" among a scatter of large sponges and gorgonians. The great abundance and the taxonomic singularities of the sponge fauna occurring in these deep-shelf bottoms strongly suggest these habitats to be considered within the environmental protection of the Nature 2000 Network.


Subject(s)
Porifera/anatomy & histology , Porifera/classification , Animals , Demography , Mediterranean Sea , Porifera/physiology , Species Specificity
3.
Zootaxa ; 3669: 571-84, 2013.
Article in English | MEDLINE | ID: mdl-26312358

ABSTRACT

The foraminifer Spiculosiphon oceana sp. nov. is a giant (>4 cm) agglutinated astrorhizid, which makes the second known species of this unusual genus and its first Mediterranean record. It has a peculiar stalked, capitate, monothalamous test. Bleach digestion and X-ray microanalysis indicated the test to be made exclusively of siliceous sponge spicules agglutinated in organic cement. The organism stands on a hollow, 4 cm long, 0.5 cm thick stalk built with highly selected, long and thin spicule fragments, tightly cemented together in parallel to the main axis of the stalk. The proximal end of the stalk is closed and slightly expanded into a bulb-like structure, designed to penetrate between the sand grains and maintaining the test upright while avoiding a permanent attachment to the substratum. The distal stalk end becomes a hollow, globe-like structure that contains the main protoplasm. The globelike region is built with loosely agglutinated and irregularly-shaped spicules, allowing extrusion of the pseudopodia through the cavities between the spicules. The globelike structure also serves as an anchoring basis, from which long and thin, solid tracts protrude radially to make a spherical crown that attains about 4 mm in total diameter. The radiating tracts are built with highly selected aciculate spicule fragments held together with a translucent organic cement. They provide skeletal support for the extension of a crown of pseudopodia into the water column. This arrangement is thought to enhance the chances of the pseudopodia to contact demersal planktonic prey. In summary, Spiculosiphon species collect and arrange sponge spicules with high selectivity to recreate a body morphology that strongly converges to that of some carnivorous sponges, which allows these predatory foraminifera to exploit a prey capturing strategy similar to that of the carnivorous sponges. This idea is also consistent with our report of an additional, yet undetermined, Spiculosiphon species occurring in the same sublittoral Mediterranean cave where carnivorous sponges were first discovered.


Subject(s)
Foraminifera/classification , Foraminifera/physiology , Foraminifera/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...