Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Anal Chim Acta ; 1325: 342917, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39244310

ABSTRACT

The evolution of analytical techniques has opened the possibilities of accurate analyte detection through a straightforward method and short acquisition time, leading towards their applicability to identify medical conditions. Surface-enhanced Raman spectroscopy (SERS) has long been proven effective for rapid detection and relies on SERS spectra that are unique to each specific analyte. However, the complexity of viruses poses challenges to SERS and hinders further progress in its practical applications. The principle of SERS revolves around the interaction among substrate, analyte, and Raman laser, but most studies only emphasize the substrate, especially label-free methods, and the synergy among these factors is often ignored. Therefore, issues related to reproducibility and consistency of results, which are crucial for medical diagnosis and are the main highlights of this review, can be understood and largely addressed when considering these interactions. Viruses are composed of multiple surface components and can be detected by label-free SERS, but the presence of non-target molecules in clinical samples interferes with the detection process. Appropriate spectral data processing workflow also plays an important role in the interpretation of results. Furthermore, integrating machine learning into data processing can account for changes brought about by the presence of non-target molecules when analyzing spectral features to accurately group the data, for example, whether the sample corresponds to a positive or negative patient, and whether a virus variant or multiple viruses are present in the sample. Subsequently, advances in interdisciplinary fields can bring SERS closer to practical applications.


Subject(s)
Spectrum Analysis, Raman , Viruses , Spectrum Analysis, Raman/methods , Viruses/isolation & purification , Viruses/chemistry , Humans , Surface Properties
2.
Talanta ; 278: 126466, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38944940

ABSTRACT

The COVID-19 pandemic presents global challenges, notably with co-infections in respiratory tract involving SARS-CoV-2 variants and influenza strains. Detecting multiple viruses simultaneously is crucial for accurate diagnosis, effective tracking infectious sources, and containment of the epidemic. This study uses a label-free surface-enhanced Raman spectroscopy (SERS) method using Au NPs/pZrO2 (250) and FIB-made Au NRs (100) to detect dual viruses, including SARS-CoV-2 Delta variant (D) and influenza A (A) or B (B) virus. Results demonstrate distinct peaks facilitating virus differentiation, especially between D and A or B, with clear disparities between substrates; specific peaks at 950 and 1337 cm-1 are pivotal for discerning viruses using Au NPs/pZrO2 (250), while those at 1050, 1394, and 1450 cm-1 and 1033, 1165, 1337, and 1378 cm-1 are key for validation using Au NRs (100). Differences in substrate surface morphology and spatial disposition of accommodating viruses significantly influence hotspot formation and Raman signal amplification efficiency, thereby affecting the ability to distinguish various viruses. Furthermore, both substrates offer insights, even in the presence of oxymetazoline hydrochloride (an interfering substance), with practical implications in viral diagnosis. The customized design and reproducibility underscore efficient Raman signal amplification, even in challenging environments, highlighting potential for widespread virus detection.


Subject(s)
Gold , Nanotubes , SARS-CoV-2 , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Gold/chemistry , SARS-CoV-2/isolation & purification , Nanotubes/chemistry , Humans , Influenza A virus/isolation & purification , Metal Nanoparticles/chemistry , COVID-19/diagnosis , COVID-19/virology , Surface Properties
3.
Anal Chim Acta ; 1256: 341151, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37037632

ABSTRACT

A method using label-free surface enhanced Raman spectroscopy (SERS) based on substrate design is provided for an early detection and differentiation of spike glycoprotein mutation sites in live SARS-CoV-2 variants. Two SERS-active substrates, Au nanocavities (Au NCs) and Au NPs on porous ZrO2 (Au NPs/pZrO2), were used to identify specific peaks of A.3, Alpha, and Delta variants at different concentrations and demonstrated the ability to provide their SERS spectra with detection limits of 0.1-1.0% (or 104-5 copies/mL). Variant identification can be achieved by cross-examining reference spectra and analyzing the substrate-analyte relationship between the suitability of the analyte upon the hotspot(s) formed at high concentrations and the effective detection distance at low concentrations. Mutation sites on the S1 chain of the spike glycoprotein for each variant may be related and distinguishable. This method does not require sample preprocessing and therefore allows for fast screening, which is of high value for more comprehensive and specific studies to distinguish upcoming variants.


Subject(s)
COVID-19 , Metal Nanoparticles , Humans , SARS-CoV-2/genetics , Gold/chemistry , Metal Nanoparticles/chemistry , COVID-19/diagnosis , Spectrum Analysis, Raman/methods , Glycoproteins
4.
Anal Chim Acta ; 1193: 339406, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35058004

ABSTRACT

The COVID-19 pandemic negatively affected the economy and health security on a global scale, causing a drastic change on lifestyle, calling a need to mitigate further transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Surface-enhanced Raman spectroscopy (SERS) has shown great potential in the sensitive and rapid detection of various molecules including viruses, through the identification of characteristic peaks of their outer membrane proteins. Accurate detection can be developed through the synergistic integration effect among SERS-active substrate, the appropriate laser wavelength, and the target analyte. In this study, gold nanocavities (Au NC) and Au nanoparticles upon ZrO2 nano-bowls (Au NPs/pZrO2) were tested and used as SERS-active substrates in detecting SARS-CoV-2 pseudovirus containing S protein as a surface capsid glycoprotein (SARS-CoV-2 S pseudovirus) and vesicular stomatitis virus G (VSV-G) pseudo-type lentivirus (VSV-G pseudovirus) to demonstrate their virus detection capability. The optimized Au NCs and Au NPs/pZrO2 substrates were then verified by examining the repetition of measurement, reproducibility, and detection limit. Due to the difference in geometry and composition of the substrates, the characteristic peak-positions of live SARS-CoV-2 S and VSV-G pseudoviruses in the obtained Raman spectra vary, which were also compared with those of inactivated ones. Based on the experimental results, SERS mechanism of each substrate to detect virus is proposed. The formation of hot spots brought by the synergistic integration effect among substrate, analyte, and laser induction may result differences in the obtained SERS spectra.


Subject(s)
COVID-19 , Metal Nanoparticles , Gold , Humans , Pandemics , Reproducibility of Results , SARS-CoV-2 , Spectrum Analysis, Raman
5.
Biosens Bioelectron ; 181: 113153, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33761416

ABSTRACT

The COVID-19 pandemic has caused a significant burden since December 2019 that has negatively impacted the global economy owing to the fact that the SARS-CoV-2 virus is fast-transmitting and highly contagious. Efforts have been taken to minimize the impact through strict screening measures in country borders in order to isolate potential virus carriers. Effective fast-screening methods are thus needed to identify infected individuals. The standard diagnostic methods for screening SARS-CoV-2 virus have always been to perform nucleic acid-based and serological tests. However, with each having drawbacks on producing false results at very early or later stage after symptoms onset, supplementary techniques are needed to back up these tests. Surface-enhanced Raman spectroscopy (SERS) as a detection technique has continuously advanced throughout the years in terms of sensitivity and capability to detect ultralow concentration of analytes ranging from single molecule to pathogens, to present as a highly potential alternative to known sensing methods. SERS technology as a candidate for an alternative and supplementary diagnostic method for the viral envelope of SARS-CoV-2 virus is presented, comparing its pros and cons to the standard methods and what other aspects it could offer that the other methods are not capable of. Factors that contribute to the detection effectivity of SERS is also discussed to show the advantages and limitations of this technique. Despite its promising capabilities, challenges like sources of SARS-CoV-2 virus and its variations, reliable SERS spectra, mass production of SERS-active substrates, and compliance to regulations for wide-scale testing scenario are highlighted.


Subject(s)
Biosensing Techniques , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Spectrum Analysis, Raman , Humans , Nucleic Acids , Pandemics
6.
Nanomaterials (Basel) ; 9(12)2019 Dec 09.
Article in English | MEDLINE | ID: mdl-31835301

ABSTRACT

Nanostructures with spikes (NSPs) have been a subject of several surface-enhanced Raman scattering (SERS) applications owing to their significant Raman signal enhancement brought about by the combined effects of interspike coupling and the accumulated induction on the tips of spikes. Thus, NSPs offer great potential as a SERS-active substrate for relevant applications that require a high density of enhanced "hot spots". In this study, Ag NSPs were synthesized in varying degrees of agglomeration and were thereafter deposited onto a transparent adhesive tape as a flexible substrate for SERS applications, specifically, in the detection of trace amounts of pesticides. These flexible substrates were referred to as Ag NSPs/tape and optimized with an enhancement factor (EF) of ca. 1.7 × 107. A strong resulting signal enhancement could be attributed to an optimal degree of agglomeration and, consequently, the distances among/between spikes. Long spikes on the synthesized core of Ag NSPs tend to be loosely spaced, which are suitable in detecting relatively large molecules that could access the spaces among the spikes where "hot spots" are generally formed. Since one side of the transparent tape is adhesive, the paste-and-peel off method was successful in obtaining phosmet and carbaryl residues from apple peels as reflected in the acquired SERS spectra. In situ trace detection of the pesticides at low concentrations down to 10-7 M could be demonstrated. In situ trace detection of mixed pesticides was possible as the characteristic peaks of both pesticides were observed in equimolar mixtures of the analytes at 10-2 to 10-4 M. This study is, thus, premised upon applying for in situ trace detection on e.g., fruit skin.

7.
Nanomaterials (Basel) ; 9(5)2019 Apr 27.
Article in English | MEDLINE | ID: mdl-31035555

ABSTRACT

Health risks posed by the exposure to trace amounts of pesticide residue in agricultural products have gained a lot of concerns, due to their neurotoxic nature. The applications of surface-enhanced Raman Scattering (SERS) as a detection technique have consistently shown its potential as a rapid and sensitive means with minimal sample preparation. In this study, gold nanoparticles (Au NPs) in elliptical shapes were collected into a layer of ordered zirconia concave pores. The porous zirconia layer (pZrO2) was then deposited with Au NPs, denoted as Au NPs (x)/pZrO2, where x indicates the deposition thickness of Au NPs in nm. In the concave structure of pZrO2, Au-ZrO2 and Au-Au interactions provide a synergistic and physical mechanism of SERS, which is anticipated to collect and amplify SERS signals and thereafter improve the enhancement factor (EF) of Au NPs/pZrO2. By taking Rhodamine 6G (R6G) as the test molecule, EF of Au NPs/pZrO2 might reach to 7.0 × 107. Au NPs (3.0)/pZrO2 was then optimized and competent to detect pesticides, e.g., phosmet and carbaryl at very low concentrations, corresponding to the maximum residue limits of each, i.e., 0.3 ppm and 0.2 ppm, respectively. Au NPs (3.0)/pZrO2 also showed the effectiveness of distinguishing between phosmet and carbaryl under mixed conditions. Due to the strong affinities of the phosphoric groups and sulfur in phosmet to the Au NPs (3.0)/pZrO2, the substrate exhibited selective detection to this particular pesticide. In this study, Au NPs (3.0)/pZrO2 has thus demonstrated trace detection of residual pesticides, due to the substrate design that intended to provide collective amplification of SERS.

SELECTION OF CITATIONS
SEARCH DETAIL