Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
medRxiv ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38559077

ABSTRACT

Background: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare inherited arrhythmia caused by mutations in the ryanodine receptor type 2 (RyR2). Diagnosis of CPVT often occurs after a major cardiac event, thus posing a severe threat to the patient's health. Methods: Publication databases, including PubMed, Scopus, and Embase, were searched for articles on patients with RyR2-CPVT mutations and their associated clinical presentation. Articles were reviewed by two independent reviewers and mutations were analyzed for demographic information, mutation distribution, and therapeutics. The human RyR2 cryo-EM structure was used to model CPVT mutations and predict the diagnosis and outcomes of CPVT patients. Findings: We present a database of 1008 CPVT patients from 227 papers. Data analyses revealed that patients most often experienced exercise-induced syncope in their early teenage years but the diagnosis of CPVT took a decade. Mutations located near key regulatory sites in the channel were associated with earlier onset of CPVT symptoms including sudden cardiac death. Interpretation: The present study provides a road map for predicting clinical outcomes based on the location of RyR2 mutations in CPVT patients. The study was partially limited by the inconsistency in the depth of information provided in each article, but nevertheless is an important contribution to the understanding of the clinical and molecular basis of CPVT and suggests the need for early diagnosis and creative approaches to disease management. Funding: The work was supported by grant NIH R01HL145473, P01 HL164319 R25HL156002, T32 HL120826.

2.
Sci Transl Med ; 15(715): eadf8977, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37756377

ABSTRACT

Chemotherapy-induced cognitive dysfunction (chemobrain) is an important adverse sequela of chemotherapy. Chemobrain has been identified by the National Cancer Institute as a poorly understood problem for which current management or treatment strategies are limited or ineffective. Here, we show that chemotherapy treatment with doxorubicin (DOX) in a breast cancer mouse model induced protein kinase A (PKA) phosphorylation of the neuronal ryanodine receptor/calcium (Ca2+) channel type 2 (RyR2), RyR2 oxidation, RyR2 nitrosylation, RyR2 calstabin2 depletion, and subsequent RyR2 Ca2+ leakiness. Chemotherapy was furthermore associated with abnormalities in brain glucose metabolism and neurocognitive dysfunction in breast cancer mice. RyR2 leakiness and cognitive dysfunction could be ameliorated by treatment with a small molecule Rycal drug (S107). Chemobrain was also found in noncancer mice treated with DOX or methotrexate and 5-fluorouracil and could be prevented by treatment with S107. Genetic ablation of the RyR2 PKA phosphorylation site (RyR2-S2808A) also prevented the development of chemobrain. Chemotherapy increased brain concentrations of the tumor necrosis factor-α and transforming growth factor-ß signaling, suggesting that increased inflammatory signaling might contribute to oxidation-driven biochemical remodeling of RyR2. Proteomics and Gene Ontology analysis indicated that the signaling downstream of chemotherapy-induced leaky RyR2 was linked to the dysregulation of synaptic structure-associated proteins that are involved in neurotransmission. Together, our study points to neuronal Ca2+ dyshomeostasis via leaky RyR2 channels as a potential mechanism contributing to chemobrain, warranting further translational studies.


Subject(s)
Antineoplastic Agents , Chemotherapy-Related Cognitive Impairment , Cognitive Dysfunction , Animals , Mice , Ryanodine Receptor Calcium Release Channel , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Brain , Doxorubicin/adverse effects
3.
Stem Cell Res Ther ; 14(1): 266, 2023 09 23.
Article in English | MEDLINE | ID: mdl-37740238

ABSTRACT

BACKGROUND: Polymorphic ventricular tachycardia (PMVT) is a rare genetic disease associated with structurally normal hearts which in 8% of cases can lead to sudden cardiac death, typically exercise-induced. We previously showed a link between the RyR2-H29D mutation and a clinical phenotype of short-coupled PMVT at rest using patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs). In the present study, we evaluated the effects of clinical and experimental anti-arrhythmic drugs on the intracellular Ca2+ handling, contractile and molecular properties in PMVT hiPSC-CMs in order to model a personalized medicine approach in vitro. METHODS: Previously, a blood sample from a patient carrying the RyR2-H29D mutation was collected and reprogrammed into several clones of RyR2-H29D hiPSCs, and in addition we generated an isogenic control by reverting the RyR2-H29D mutation using CRIPSR/Cas9 technology. Here, we tested 4 drugs with anti-arrhythmic properties: propranolol, verapamil, flecainide, and the Rycal S107. We performed fluorescence confocal microscopy, video-image-based analyses and biochemical analyses to investigate the impact of these drugs on the functional and molecular features of the PMVT RyR2-H29D hiPSC-CMs. RESULTS: The voltage-dependent Ca2+ channel inhibitor verapamil did not prevent the aberrant release of sarcoplasmic reticulum (SR) Ca2+ in the RyR2-H29D hiPSC-CMs, whereas it was prevented by S107, flecainide or propranolol. Cardiac tissue comprised of RyR2-H29D hiPSC-CMs exhibited aberrant contractile properties that were largely prevented by S107, flecainide and propranolol. These 3 drugs also recovered synchronous contraction in RyR2-H29D cardiac tissue, while verapamil did not. At the biochemical level, S107 was the only drug able to restore calstabin2 binding to RyR2 as observed in the isogenic control. CONCLUSIONS: By testing 4 drugs on patient-specific PMVT hiPSC-CMs, we concluded that S107 and flecainide are the most potent molecules in terms of preventing the abnormal SR Ca2+ release and contractile properties in RyR2-H29D hiPSC-CMs, whereas the effect of propranolol is partial, and verapamil appears ineffective. In contrast with the 3 other drugs, S107 was able to prevent a major post-translational modification of RyR2-H29D mutant channels, the loss of calstabin2 binding to RyR2. Using patient-specific hiPSC and CRISPR/Cas9 technologies, we showed that S107 is the most efficient in vitro candidate for treating the short-coupled PMVT at rest.


Subject(s)
Calcium , Tachycardia, Ventricular , Humans , Myocytes, Cardiac , Flecainide/pharmacology , Propranolol/pharmacology , Propranolol/therapeutic use , Anti-Arrhythmia Agents , Precision Medicine , Ryanodine Receptor Calcium Release Channel/genetics , Tachycardia, Ventricular/drug therapy , Tachycardia, Ventricular/genetics , Verapamil/pharmacology , Verapamil/therapeutic use
4.
Nat Neurosci ; 26(8): 1365-1378, 2023 08.
Article in English | MEDLINE | ID: mdl-37429912

ABSTRACT

Cognitive dysfunction (CD) in heart failure (HF) adversely affects treatment compliance and quality of life. Although ryanodine receptor type 2 (RyR2) has been linked to cardiac muscle dysfunction, its role in CD in HF remains unclear. Here, we show in hippocampal neurons from individuals and mice with HF that the RyR2/intracellular Ca2+ release channels were subjected to post-translational modification (PTM) and were leaky. RyR2 PTM included protein kinase A phosphorylation, oxidation, nitrosylation and depletion of the stabilizing subunit calstabin2. RyR2 PTM was caused by hyper-adrenergic signaling and activation of the transforming growth factor-beta pathway. HF mice treated with a RyR2 stabilizer drug (S107), beta blocker (propranolol) or transforming growth factor-beta inhibitor (SD-208), or genetically engineered mice resistant to RyR2 Ca2+ leak (RyR2-p.Ser2808Ala), were protected against HF-induced CD. Taken together, we propose that HF is a systemic illness driven by intracellular Ca2+ leak that includes cardiogenic dementia.


Subject(s)
Cognitive Dysfunction , Heart Failure , Ryanodine Receptor Calcium Release Channel , Animals , Mice , Calcium/metabolism , Cognitive Dysfunction/etiology , Heart Failure/metabolism , Phosphorylation , Quality of Life , Ryanodine Receptor Calcium Release Channel/metabolism , Transforming Growth Factors/metabolism
5.
Acta Neuropathol ; 146(2): 301-318, 2023 08.
Article in English | MEDLINE | ID: mdl-37335342

ABSTRACT

Essential Tremor (ET) is a prevalent neurological disease characterized by an 8-10 Hz action tremor. Molecular mechanisms of ET remain poorly understood. Clinical data suggest the importance of the cerebellum in disease pathophysiology, and pathological studies indicate Purkinje Cells (PCs) incur damage. Our recent cerebellar cortex and PC-specific transcriptome studies identified alterations in calcium (Ca2+) signaling pathways that included ryanodine receptor type 1 (RyR1) in ET. RyR1 is an intracellular Ca2+ release channel located on the Endoplasmic Reticulum (ER), and in cerebellum is predominantly expressed in PCs. Under stress conditions, RyR1 undergoes several post-translational modifications (protein kinase A [PKA] phosphorylation, oxidation, nitrosylation), coupled with depletion of the channel-stabilizing binding partner calstabin1, which collectively characterize a "leaky channel" biochemical signature. In this study, we found markedly increased PKA phosphorylation at the RyR1-S2844 site, increased RyR1 oxidation and nitrosylation, and calstabin1 depletion from the RyR1 complex in postmortem ET cerebellum. Decreased calstabin1-RyR1-binding affinity correlated with loss of PCs and climbing fiber-PC synapses in ET. This 'leaky' RyR1 signature was not seen in control or Parkinson's disease cerebellum. Microsomes from postmortem cerebellum demonstrated excessive ER Ca2+ leak in ET vs. controls, attenuated by channel stabilization. We further studied the role of RyR1 in tremor using a mouse model harboring a RyR1 point mutation that mimics constitutive site-specific PKA phosphorylation (RyR1-S2844D). RyR1-S2844D homozygous mice develop a 10 Hz action tremor and robust abnormal oscillatory activity in cerebellar physiological recordings. Intra-cerebellar microinfusion of RyR1 agonist or antagonist, respectively, increased or decreased tremor amplitude in RyR1-S2844D mice, supporting a direct role of cerebellar RyR1 leakiness for tremor generation. Treating RyR1-S2844D mice with a novel RyR1 channel-stabilizing compound, Rycal, effectively dampened cerebellar oscillatory activity, suppressed tremor, and normalized cerebellar RyR1-calstabin1 binding. These data collectively support that stress-associated ER Ca2+ leak via RyR1 may contribute to tremor pathophysiology.


Subject(s)
Calcium , Ryanodine Receptor Calcium Release Channel , Humans , Ryanodine Receptor Calcium Release Channel/metabolism , Calcium/metabolism , Tremor/metabolism , Cerebellum/metabolism , Endoplasmic Reticulum/metabolism , Muscle, Skeletal/metabolism
6.
Sci Adv ; 8(29): eabo1272, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35857850

ABSTRACT

Ryanodine receptor type 2 (RyR2) mutations have been linked to an inherited form of exercise-induced sudden cardiac death called catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT results from stress-induced sarcoplasmic reticular Ca2+ leak via the mutant RyR2 channels during diastole. We present atomic models of human wild-type (WT) RyR2 and the CPVT mutant RyR2-R2474S determined by cryo-electron microscopy with overall resolutions in the range of 2.6 to 3.6 Å, and reaching local resolutions of 2.25 Å, unprecedented for RyR2 channels. Under nonactivating conditions, the RyR2-R2474S channel is in a "primed" state between the closed and open states of WT RyR2, rendering it more sensitive to activation that results in stress-induced Ca2+ leak. The Rycal drug ARM210 binds to RyR2-R2474S, reverting the primed state toward the closed state. Together, these studies provide a mechanism for CPVT and for the therapeutic actions of ARM210.

7.
Alzheimers Dement ; 18(5): 955-965, 2022 05.
Article in English | MEDLINE | ID: mdl-35112786

ABSTRACT

INTRODUCTION: The mechanisms that lead to cognitive impairment associated with COVID-19 are not well understood. METHODS: Brain lysates from control and COVID-19 patients were analyzed for oxidative stress and inflammatory signaling pathway markers, and measurements of Alzheimer's disease (AD)-linked signaling biochemistry. Post-translational modifications of the ryanodine receptor/calcium (Ca2+ ) release channels (RyR) on the endoplasmic reticuli (ER), known to be linked to AD, were also measured by co-immunoprecipitation/immunoblotting of the brain lysates. RESULTS: We provide evidence linking SARS-CoV-2 infection to activation of TGF-ß signaling and oxidative overload. The neuropathological pathways causing tau hyperphosphorylation typically associated with AD were also shown to be activated in COVID-19 patients. RyR2 in COVID-19 brains demonstrated a "leaky" phenotype, which can promote cognitive and behavioral defects. DISCUSSION: COVID-19 neuropathology includes AD-like features and leaky RyR2 channels could be a therapeutic target for amelioration of some cognitive defects associated with SARS-CoV-2 infection and long COVID.


Subject(s)
Alzheimer Disease , COVID-19 , Alzheimer Disease/genetics , Brain/pathology , COVID-19/complications , Calcium Signaling/physiology , Humans , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
8.
Nat Commun ; 12(1): 7219, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34893614

ABSTRACT

Sustained ryanodine receptor (RyR) Ca2+ leak is associated with pathological conditions such as heart failure or skeletal muscle weakness. We report that a single session of sprint interval training (SIT), but not of moderate intensity continuous training (MICT), triggers RyR1 protein oxidation and nitrosylation leading to calstabin1 dissociation in healthy human muscle and in in vitro SIT models (simulated SIT or S-SIT). This is accompanied by decreased sarcoplasmic reticulum Ca2+ content, increased levels of mitochondrial oxidative phosphorylation proteins, supercomplex formation and enhanced NADH-linked mitochondrial respiratory capacity. Mechanistically, (S-)SIT increases mitochondrial Ca2+ uptake in mouse myotubes and muscle fibres, and decreases pyruvate dehydrogenase phosphorylation in human muscle and mouse myotubes. Countering Ca2+ leak or preventing mitochondrial Ca2+ uptake blunts S-SIT-induced adaptations, a result supported by proteomic analyses. Here we show that triggering acute transient Ca2+ leak through RyR1 in healthy muscle may contribute to the multiple health promoting benefits of exercise.


Subject(s)
Calcium/metabolism , Mitochondria/metabolism , NAD/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Calcium Signaling , Cell Line , Endoplasmic Reticulum/metabolism , Energy Metabolism , Female , Humans , Male , Mice , Mice, Inbred C57BL , Muscle Weakness , Proteomics , Ryanodine Receptor Calcium Release Channel/genetics , Sarcoplasmic Reticulum/metabolism , Tacrolimus Binding Proteins
9.
Acta Neuropathol Commun ; 9(1): 186, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34809703

ABSTRACT

The type 1 ryanodine receptor (RyR1) is an intracellular calcium (Ca2+) release channel on the sarcoplasmic/endoplasmic reticulum that is required for skeletal muscle contraction. RyR1 channel activity is modulated by ligands, including the activators Ca2+ and ATP. Patients with inherited mutations in RyR1 may exhibit muscle weakness as part of a heterogeneous, complex disorder known as RYR1-related myopathy (RYR1-RM) or more recently termed RYR1-related disorders (RYR1-RD). Guided by high-resolution structures of skeletal muscle RyR1, obtained using cryogenic electron microscopy, we introduced mutations into putative Ca2+ and ATP binding sites and studied the function of the resulting mutant channels. These mutations confirmed the functional significance of the Ca2+ and ATP binding sites identified by structural studies based on the effects on channel regulation. Under normal conditions, Ca2+ activates RyR1 at low concentrations (µM) and inhibits it at high concentrations (mM). Mutations in the Ca2+-binding site impaired both activating and inhibitory regulation of the channel, suggesting a single site for both high and low affinity Ca2+-dependent regulation of RyR1 function. Mutation of residues that interact with the adenine ring of ATP abrogated ATP binding to the channel, whereas mutating residues that interact with the triphosphate tail only affected the degree of activation. In addition, patients with mutations at the Ca2+ or ATP binding sites suffer from muscle weakness, therefore impaired RyR1 channel regulation by either Ca2+ or ATP may contribute to the pathophysiology of RYR1-RM in some patients.


Subject(s)
Calcium/metabolism , Muscular Diseases/genetics , Muscular Diseases/pathology , Receptors, Purinergic P2/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Animals , Binding Sites , Calcium Signaling/genetics , HEK293 Cells , Humans , Microsomes/metabolism , Muscle Weakness/genetics , Muscle Weakness/metabolism , Muscle Weakness/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mutation , Rabbits , Receptors, Purinergic P2/metabolism
10.
bioRxiv ; 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33619477

ABSTRACT

COVID-19, caused by SARS-CoV-2 involves multiple organs including cardiovascular, pulmonary and central nervous system. Understanding how SARS-CoV-2 infection afflicts diverse organ systems remains challenging 1,2 . Particularly vexing has been the problem posed by persistent organ dysfunction known as "long COVID," which includes cognitive impairment 3 . Here we provide evidence linking SARS-CoV-2 infection to activation of TGF-ß signaling and oxidative overload. One consequence is oxidation of the ryanodine receptor/calcium (Ca 2+ ) release channels (RyR) on the endo/sarcoplasmic (ER/SR) reticuli in heart, lung and brains of patients who succumbed to COVID-19. This depletes the channels of the stabilizing subunit calstabin2 causing them to leak Ca 2+ which can promote heart failure 4,5 , pulmonary insufficiency 6 and cognitive and behavioral defects 7-9 . Ex-vivo treatment of heart, lung, and brain tissues from COVID-19 patients using a Rycal drug (ARM210) 10 prevented calstabin2 loss and fixed the channel leak. Of particular interest is that neuropathological pathways activated downstream of leaky RyR2 channels in Alzheimer's Disease (AD) patients were activated in COVID-19 patients. Thus, leaky RyR2 Ca 2+ channels may play a role in COVID-19 pathophysiology and could be a therapeutic target for amelioration of some comorbidities associated with SARS-CoV-2 infection.

11.
Hum Mol Genet ; 29(24): 3919-3934, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33388782

ABSTRACT

Mutations in the lamin A/C gene (LMNA), which encodes A-type lamins, cause several diseases called laminopathies, the most common of which is dilated cardiomyopathy with muscular dystrophy. The role of Ca2+ regulation in these diseases remain poorly understood. We now show biochemical remodeling of the ryanodine receptor (RyR)/intracellular Ca2+ release channel in heart samples from human subjects with LMNA mutations, including protein kinase A-catalyzed phosphorylation, oxidation and depletion of the stabilizing subunit calstabin. In the LmnaH222P/H222P murine model of Emery-Dreifuss muscular dystrophy caused by LMNA mutation, we demonstrate an age-dependent biochemical remodeling of RyR2 in the heart and RyR1 in skeletal muscle. This RyR remodeling is associated with heart and skeletal muscle dysfunction. Defective heart and muscle function are ameliorated by treatment with a novel Rycal small molecule drug (S107) that fixes 'leaky' RyRs. SMAD3 phosphorylation is increased in hearts and diaphragms of LmnaH222P/H222P mice, which enhances NADPH oxidase binding to RyR channels, contributing to their oxidation. There is also increased generalized protein oxidation, increased calcium/calmodulin-dependent protein kinase II-catalyzed phosphorylation of RyRs and increased protein kinase A activity in these tissues. Our data show that RyR remodeling plays a role in cardiomyopathy and skeletal muscle dysfunction caused by LMNA mutation and identify these Ca2+ channels as a potential therapeutic target.


Subject(s)
Cardiomyopathies/pathology , Disease Models, Animal , Heart/physiopathology , Lamin Type A/genetics , Muscular Dystrophies/pathology , Mutation , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Calcium Signaling , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Female , Homeostasis , Humans , Male , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophies/etiology , Muscular Dystrophies/metabolism , Ryanodine Receptor Calcium Release Channel/genetics
12.
JCI Insight ; 5(19)2020 10 02.
Article in English | MEDLINE | ID: mdl-32897880

ABSTRACT

Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disorder affecting striatal neurons beginning in young adults with loss of muscle coordination and cognitive decline. Less appreciated is the fact that patients with HD also exhibit cardiac and respiratory dysfunction, including pulmonary insufficiency and cardiac arrhythmias. The underlying mechanism for these symptoms is poorly understood. In the present study we provide insight into the cause of cardiorespiratory dysfunction in HD and identify a potentially novel therapeutic target. We now show that intracellular calcium (Ca2+) leak via posttranslationally modified ryanodine receptor/intracellular calcium release (RyR) channels plays an important role in HD pathology. RyR channels were oxidized, PKA phosphorylated, and leaky in brain, heart, and diaphragm both in patients with HD and in a murine model of HD (Q175). HD mice (Q175) with endoplasmic reticulum Ca2+ leak exhibited cognitive dysfunction, decreased parasympathetic tone associated with cardiac arrhythmias, and reduced diaphragmatic contractile function resulting in impaired respiratory function. Defects in cognitive, motor, and respiratory functions were ameliorated by treatment with a novel Rycal small-molecule drug (S107) that fixes leaky RyR. Thus, leaky RyRs likely play a role in neuronal, cardiac, and diaphragmatic pathophysiology in HD, and RyRs are a potential novel therapeutic target.


Subject(s)
Arrhythmias, Cardiac/pathology , Calcium Signaling , Calcium/metabolism , Disease Models, Animal , Huntington Disease/complications , Respiratory Insufficiency/pathology , Ryanodine Receptor Calcium Release Channel/metabolism , Aged , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Case-Control Studies , Female , Humans , Male , Mice , Middle Aged , Neurons/metabolism , Neurons/pathology , Respiratory Insufficiency/etiology , Respiratory Insufficiency/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...