Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Res ; 272: 197732, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31445103

ABSTRACT

To visually examine the early phase of chikungunya virus (CHIKV) infection in target cells, we constructed a virus-like particle (VLP) in which the envelope protein E1 is fused with green fluorescent protein (GFP). This chikungunya VLP-GFP (CHIK-VLP-EGFP), purified by density gradient fractionation, was observed as 60-70 nm-dia. particles and was detected as tiny puncta of fluorescence in the cells. CHIK-VLP-EGFP showed binding properties similar to those of the wild-type viruses. Most of the fluorescence signals that had bound on Vero cells disappeared within 30 min at 37 °C, but not in the presence of anti-CHIKV neutralizing serum or an endosomal acidification inhibitor (bafilomycin A1), suggesting that the loss of fluorescence signals is due to the disassembly of the viral envelope following the internalization of CHIK-VLP-EGFP. In addition to these results, the fluorescence signals disappeared in highly susceptible Vero and U251MG cells but not in poorly susceptible A549 cells. Thus, CHIK-VLP-EGFP is a useful tool to examine the effects of the CHIKV neutralizing antibodies and antiviral compounds that are effective in the entry phase of CHIKV.


Subject(s)
Chikungunya Fever/virology , Chikungunya virus/physiology , Genes, Reporter , Green Fluorescent Proteins/genetics , Virus Replication , Animals , Cells, Cultured , Chikungunya virus/ultrastructure , Chlorocebus aethiops , Gene Expression , Genetic Vectors/genetics , Models, Biological , Vero Cells , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Virus Internalization
2.
PLoS One ; 9(9): e108169, 2014.
Article in English | MEDLINE | ID: mdl-25265335

ABSTRACT

Chikungunya virus (CHIKV) is becoming a global concern due to the increasing number of outbreaks throughout the world and the absence of any CHIKV-specific vaccine or treatment. Virus-like particles (VLPs) are multistructured proteins that mimic the organization and conformation of native viruses but lack the viral genome. They are noninfectious and potentially safer vaccine candidates. Recent studies demonstrated that the yield of CHIKV VLPs varies depending on the strains, despite the 95% amino acid similarity of the strains. This might be due to the codon usage, since protein expression is differently controlled by different organisms. We optimized the region encoding CHIKV structural proteins, C-E3-E2-6k-E1, inserted it into a mammalian expression vector, and used the resulting construct to transfect 293 cells. We detected 50-kDa proteins corresponding to E1 and/or E2 in the cell lysate and the supernatant. Transmission electron microscopy revealed spherical particles with a 50- to 60-nm diameter in the supernatant that resembled the native CHIKV virions. The buoyant density of the VLPs was 1.23 g/mL, and the yield was 20 µg purified VLPs per 108 cells. The VLPs aggregated when mixed with convalescent sera from chikungunya patients, indicating that their antigenicity is similar to that of native CHIKV. Antibodies elicited with the VLPs were capable of detecting native CHIKV, demonstrating that the VLPs retain immunogenicity similar to that of the native virion. These results indicated that CHIKV VLPs are morphologically, antigenically, and immunologically similar to the native CHIKV, suggesting that they have potential for use in chikungunya vaccines.


Subject(s)
Chikungunya virus/ultrastructure , Virion/ultrastructure , Antibodies, Viral/analysis , Antigens, Viral/analysis , Base Sequence , Chikungunya virus/immunology , DNA Primers , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Humans , Microscopy, Electron, Transmission , Microscopy, Immunoelectron
SELECTION OF CITATIONS
SEARCH DETAIL
...