Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 96(6): 2599-2609, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38300270

ABSTRACT

Programmable site-specific nucleases (SSNs) hold extraordinary promise to unlock myriad gene editing applications in medicine and agriculture. However, developing small and specific SSNs is needed to overcome the delivery and specificity translational challenges of current genome engineering technologies. Structure-guided nucleases have been harnessed to generate double-strand DNA breaks but with limited success and translational potential. Here, we harnessed the power of peptide nucleic acids (PNAs) for site-specific DNA invasion and the generation of localized DNA structures that are recognized and cleaved by the eukaryotic resolvase AtMOC1 from Arabidopsis thaliana. We named this technology PNA-assisted Resolvase-mediated (PNR) editing. We tested the PNR editing concept in vitro and demonstrated its precise target specificity, examined the nucleotide requirement around the PNA invasion for the AtMOC1-mediated cleavage, mapped the AtMOC1-mediated cleavage sites, tested the role of different types and lengths of PNA molecules invasion into dsDNA for the AtMOC1-mediated cleavage, optimized the in vitro PNA invasion and AtMOC1 cleavage conditions such as temperature, buffer conditions, and cleavage time points, and demonstrated the multiplex cleavage for precise fragment release. We discuss the best design parameters for efficient, site-specific in vitro cleavage using PNR editors.


Subject(s)
Peptide Nucleic Acids , Peptide Nucleic Acids/chemistry , DNA Breaks, Double-Stranded , DNA/chemistry , Gene Editing , Temperature
2.
Synth Biol (Oxf) ; 7(1): ysac025, 2022.
Article in English | MEDLINE | ID: mdl-36452068

ABSTRACT

Retrons are a class of retroelements that produce multicopy single-stranded DNA (ssDNA) and participate in anti-phage defenses in bacteria. Retrons have been harnessed for the overproduction of ssDNA, genome engineering and directed evolution in bacteria, yeast and mammalian cells. Retron-mediated ssDNA production in plants could unlock their potential applications in plant biotechnology. For example, ssDNA can be used as a template for homology-directed repair (HDR) in several organisms. However, current gene editing technologies rely on the physical delivery of synthetic ssDNA, which limits their applications. Here, we demonstrated retron-mediated overproduction of ssDNA in Nicotiana benthamiana. Additionally, we tested different retron architectures for improved ssDNA production and identified a new retron architecture that resulted in greater ssDNA abundance. Furthermore, co-expression of the gene encoding the ssDNA-protecting protein VirE2 from Agrobacterium tumefaciens with the retron systems resulted in a 10.7-fold increase in ssDNA production in vivo. We also demonstrated clustered regularly interspaced short palindromic repeats-retron-coupled ssDNA overproduction and targeted HDR in N. benthamiana. Overall, we present an efficient approach for in vivo ssDNA production in plants, which can be harnessed for biotechnological applications. Graphical Abstract.

3.
Front Plant Sci ; 13: 850956, 2022.
Article in English | MEDLINE | ID: mdl-35557721

ABSTRACT

OsMADS29 (M29) is a seed-specific MADS-box transcription factor involved in programmed cell death of nucellar tissue and maintaining auxin:cytokinin homeostasis. It affects embryo and endosperm development and starch filling during seed development in rice. Its expression seems to be tightly regulated by developmental, spatial, and temporal cues; however, cis- and trans-regulatory factors that affect its expression are largely unknown. In silico analysis of the 1.7 kb upstream regulatory region (URR) consisting of 1,290 bp promoter and 425 bp 5'-UTR regions revealed several auxin-responsive and seed-specific cis-regulatory elements distributed across the URR. In this study, the analysis of four URR deletions fused to a downstream ß-glucuronidase (GUS) reporter in transgenic rice has revealed the presence of several proximal positive elements and a strong distal negative element (NE). The promoter regions containing auxin-responsive elements responded positively to the exogenous application of auxins to transgenic seedlings. The proximal positive elements are capable of driving reporter expression in both vegetative and reproductive tissues. In contrast, the NE strongly suppresses reporter gene expression in both vegetative and reproductive tissues. In a transient onion peel assay system, the NE could reduce the efficacy of a 2x CaMV 35S promoter by ∼90%. Our results indicate the existence of a complex array of positive and negative regulatory regions along with auxin-responsive elements guiding the development-dependent and spatial expression of M29.

4.
ACS Synth Biol ; 11(1): 406-419, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34939798

ABSTRACT

Simple, rapid, specific, and sensitive point-of-care detection methods are needed to contain the spread of SARS-CoV-2. CRISPR/Cas9-based lateral flow assays are emerging as a powerful alternative for COVID-19 diagnostics. Here, we developed Bio-SCAN (biotin-coupled specific CRISPR-based assay for nucleic acid detection) as an accurate pathogen detection platform that requires no sophisticated equipment or technical expertise. Bio-SCAN detects the SARS-CoV-2 genome in less than 1 h from sample collection to result. In the first step, the target nucleic acid sequence is isothermally amplified in 15 min via recombinase polymerase amplification before being precisely detected by biotin-labeled nuclease-dead SpCas9 (dCas9) on commercially available lateral flow strips. The resulting readout is visible to the naked eye. Compared to other CRISPR-Cas-based pathogen detection assays, Bio-SCAN requires no additional reporters, probes, enhancers, reagents, or sophisticated devices to interpret the results. Bio-SCAN is highly sensitive and successfully detected a clinically relevant level (4 copies/µL) of synthetic SARS-CoV-2 RNA genome. Similarly, Bio-SCAN showed 100% negative and 96% positive predictive agreement with RT-qPCR results when using clinical samples (86 nasopharyngeal swab samples). Furthermore, incorporating variant-specific sgRNAs in the detection reaction allowed Bio-SCAN to efficiently distinguish between the α, ß, and δ SARS-CoV-2 variants. Also, our results confirmed that the Bio-SCAN reagents have a long shelf life and can be assembled locally in nonlaboratory and limited-resource settings. Furthermore, the Bio-SCAN platform is compatible with the nucleic acid quick extraction protocol. Our results highlight the potential of Bio-SCAN as a promising point-of-care diagnostic platform that can facilitate low-cost mass screening for SARS-CoV-2.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19 , CRISPR-Cas Systems , Point-of-Care Systems , RNA, Viral/genetics , COVID-19/diagnosis , COVID-19/genetics , Humans , SARS-CoV-2/genetics
5.
Front Bioeng Biotechnol ; 9: 800104, 2021.
Article in English | MEDLINE | ID: mdl-35127671

ABSTRACT

Rapid, specific, and sensitive detection platforms are prerequisites for early pathogen detection to efficiently contain and control the spread of contagious diseases. Robust and portable point-of-care (POC) methods are indispensable for mass screening of SARS-CoV-2. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-based nucleic acid detection technologies coupled with isothermal amplification methods provide a straightforward and easy-to-handle platform for detecting SARS-CoV-2 at POC, low-resource settings. Recently, we developed iSCAN, a two-pot system based on coupled loop-mediated isothermal amplification (LAMP) and CRISPR/Cas12a reactions. However, in two-pot systems, the tubes must be opened to conduct both reactions; two-pot systems thus have higher inherent risks of cross-contamination and a more cumbersome workflow. In this study, we developed and optimized iSCAN-V2, a one-pot reverse transcription-recombinase polymerase amplification (RT-RPA)-coupled CRISPR/Cas12b-based assay for SARS-CoV-2 detection, at a single temperature in less than an hour. Compared to Cas12a, Cas12b worked more efficiently in the iSCAN-V2 detection platform. We assessed and determined the critical factors, and present detailed guidelines and considerations for developing and establishing a one-pot assay. Clinical validation of our iSCAN-V2 detection module with reverse transcription-quantitative PCR (RT-qPCR) on patient samples showed 93.75% sensitivity and 100% specificity. Furthermore, we coupled our assay with a low-cost, commercially available fluorescence visualizer to enable its in-field deployment and use for SARS-CoV-2 detection. Taken together, our optimized iSCAN-V2 detection platform displays critical features of a POC molecular diagnostic device to enable mass-scale screening of SARS-CoV-2 in low-resource settings.

SELECTION OF CITATIONS
SEARCH DETAIL