Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 5(1): 139-148, 2019 Jan 14.
Article in English | MEDLINE | ID: mdl-33405881

ABSTRACT

Glioma stem cells (GSC) present a critical therapeutic challenge for glioblastoma multiforme (GBM). Drug screening against GSC demands development of novel in vitro and in vivo platforms that can mimic brain microenvironment and support GSC maintenance and tumorigenesis. Here, we report, a 3-dimensionel (3D) biomimetic macro-porous scaffold developed by incorporating hyaluronic acid, porcine brain extra cellular matrix (ECM) and growth factors that facilitates regeneration of GBM from primary GSCs, ex vivo and in vivo. After characterizing with human and rat GBM cell lines and neurospheres, human GSCs expressing Notch1, Sox-2, Nestin, and CD133 biomarkers were isolated from GBM patients, cultured in the 3D scaffold, and implanted subcutaneously in nude mice to develop patient derived xenograft (PDX) models. Aggressive growth pattern of PDX with formation of intratumoral vascularization was monitored by magnetic resonance imaging (MRI). Histopathological and phenotypial features of the original tumors were retained in the PDX models. We used this regenerated GBM platform to screen novel siRNA nanotherapeutics targeting Notch, Sox-2, FAK signaling for its ability to inhibit the tumorigenic potential of GSCs. Current clinical drug, Temozolomide and an anticancer phytochemical, nanocurcumin, were used as controls. The siRNA nanoparticles showed excellent efficacy in inhibiting tumorigenesis by GSCs in vivo. Our study suggests that the brain-ECM mimicking scaffold can regenerate primary gliomas from GSCs in vitro and in vivo, and the same can be used as an effective platform for screening drugs against glioma stem cells.

3.
Nanomedicine ; 15(1): 274-284, 2019 01.
Article in English | MEDLINE | ID: mdl-30343013

ABSTRACT

A woven nanotextile implant was developed and optimized for long-term continuous drug delivery for potential oncological applications. Electrospun polydioxanone (PDS) nanoyarns, which are twisted bundles of PDS nanofibres, were loaded with paclitaxel (PTX) and woven into nanotextiles of different packing densities. A mechanistic modeling of in vitro drug release proved that a combination of diffusion and matrix degradation controlled the slow PTX-release from a nanoyarn, emphasizing the role of nanostructure in modulating release kinetics. Woven nanotextiles, through variations in its packing density and thereby architecture, demonstrated tuneable PTX-release. In vivo PTX-release, pharmacokinetics and biodistribution were evaluated in healthy BALB/c mice by suturing the nanotextile to peritoneal wall. The slow and metronomic PTX-release for 60 days from the loosely woven implant was extremely effective in enhancing its residence in peritoneum, in contrast to intraperitoneal injections. Such an implantable matrix offers a novel platform for therapy of solid tumors over prolonged durations.


Subject(s)
Drug Carriers/chemistry , Drug Delivery Systems , Nanostructures/chemistry , Paclitaxel/pharmacokinetics , Peritoneum/metabolism , Textiles , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/pharmacology , Cell Proliferation , Cells, Cultured , Drug Implants , Drug Liberation , Mice , Mice, Inbred BALB C , Nanostructures/administration & dosage , Paclitaxel/administration & dosage , Polymers/chemistry , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...