Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Vitam Horm ; 125: 287-309, 2024.
Article in English | MEDLINE | ID: mdl-38997167

ABSTRACT

Advanced glycation end products (AGEs) are formed by the non-enzymatic attachment of carbohydrates to a biological macromolecule. These AGEs bind to their cognate receptor called receptor for AGEs (RAGEs), which becomes one of the important causal factors for the initiation and progression of several diseases. A deep understanding into the pathways of RAGEs will help in identifying novel intervention modalities as a part of new therapeutic strategies. Although several approaches exist to target this pathway using small molecules, compounds of plant origin etc, nanoparticles have proven to be a critical method, given its several advantages. A high bioavailability, biocompatibility, ability to cross blood brain barrier and modifiable surface properties give nanoparticles an upper edge over other strategies. In this chapter, we will discuss AGEs, their involvement in diseases and the nanoparticles used for targeting this pathway.


Subject(s)
Glycation End Products, Advanced , Nanoparticles , Humans , Glycation End Products, Advanced/metabolism , Nanoparticles/chemistry , Animals , Receptor for Advanced Glycation End Products/metabolism , Glycosylation
2.
J Biomol Struct Dyn ; : 1-15, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334284

ABSTRACT

The lack of sensitive and specific biomarkers for ovarian cancer leads to late stage diagnosis of the disease in a majority of the cases. Mutation accumulation is the basis for cancer progression, thus identifying mutations is an important step in the disease diagnosis. In the present study, a comprehensive analysis of fifteen Next Generation Sequencing samples from thirteen ovarian cancer cell lines was carried out for the identification of new mutations. The study revealed eight clinically significant novel mutations in six ovarian cancer oncogenes, viz. SMARCA4, ARID1A, PPP2R1A, CTNNB1, DICER1 and PIK3CA. In-depth computational analysis revealed that the mutations affected the structure of the proteins in terms of stability, solvent accessible surface area and molecular dynamics. Moreover, the mutations were present in functionally significant domains of the proteins, thereby adversely affecting the protein functionality. PPI network for SMARCA4, CTNNB1, DICER1, PIK3CA, PPP2R1A and ARID1A showed that these genes were involved in certain significant pathways affecting various hallmarks of cancer. For further validation, in vitro studies were performed that revealed hypermutability of the CTNNB1 gene. Through this study we have identified some key mutations and have analysed their structural and functional impact. The study establishes some key mutations, which can be potentially explored as biomarker and drug target.Communicated by Ramaswamy H. Sarma.

3.
J Biomol Struct Dyn ; 42(2): 876-884, 2024.
Article in English | MEDLINE | ID: mdl-37014028

ABSTRACT

Despite the exponential increase in research toward better treatment options for breast cancer patients, developing an effective drug with fewer side effects continues to remain a challenge. Natural compounds have emerged as a viable option and several drugs have been derived or inspired from them. In this study, we screened a library of natural compounds with diverse chemical structures against selected kinase proteins using in silico methods such as molecular docking and dynamics simulation. The best results were obtained between ß tetralone and MDM2 E3 ubiquitin ligase protein. In vitro experiments such as cytotoxicity, scratch assays and flow cytometry analysis using an MCF7 cell line were performed to determine the anti-cancer potential of the compound. As the treatment resulted in cell death and apoptosis, ß tetralone was screened in silico against anti-apoptotic targets where the best results were obtained between Bcl-w and ß tetralone. This comprehensive study suggests that the anti-cancer activity of ß tetralone is probably through the dual targeting of MDM2 E3 ubiquitin kinase and Bcl-w anti-apoptotic protein.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Biological Products , Tetralones , Humans , Molecular Docking Simulation , Tetralones/pharmacology , Biological Products/pharmacology , Antineoplastic Agents/chemistry , MCF-7 Cells , Apoptosis
4.
Int J Biol Macromol ; 253(Pt 3): 126787, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37690639

ABSTRACT

Biotemplates provide a facile, rapid, and environmentally benign route for synthesizing various nanostructured materials. Herein, Locust Bean Gum (LBG), a galactomannan polysaccharide, has been used as a biotemplate for synthesizing ZnO nanoparticles (NPs) for the first time. The composition, structure, morphology, and bandgap of ZnO were investigated by Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Photoelectron Spectroscopy (XPS), X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and UV-vis spectroscopy. XRD data showed single-phase crystalline hexagonal NPs. FTIR spectra confirmed the presence of M-O bonding in the sample. At a concentration of 0.5 mg/mL the NPs can degrade Rhodamine B under sunlight, displaying excellent photocatalytic activity. These NPs exhibited antimicrobial activity in both Staphylococcus aureus and Bacillus subtilis. Significant cell death was observed at 500 µg/mL, 250 µg/mL, 125 µg/mL and 62.5 µg/mL of NP in breast cancer, ovarian cancer and lung cancer cell lines. Wound healing assay showed that the NPs significantly blocked the cell migration at a concentration as low as 62.5 µg/mL in all three cell lines. Further optimization of the nanostructure properties will make it a promising candidate in the field of nano-biotechnology and bioengineering owing to its wide range of potential applications.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Zinc Oxide , Zinc Oxide/chemistry , Metal Nanoparticles/chemistry , Spectrometry, X-Ray Emission , Polysaccharides/pharmacology , X-Ray Diffraction , Anti-Bacterial Agents/chemistry , Spectroscopy, Fourier Transform Infrared , Plant Extracts/chemistry
5.
Cancer Invest ; 41(4): 394-404, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36797673

ABSTRACT

Identifying differentially expressed genes and co-expression modules lead to novel biomarkers. GO, pathway enrichment, network, and tumor stage analysis of 318 ovarian cancer samples from TCGA, categorised into primary and recurrent, pre-menopause and post-menopause, and early and late stage tumors was performed. Upregulated and downregulated genes in primary vs recurrent, early stage vs late-stage and pre-menopause vs post-menopause tumors were 84 and 62, 84 and 35, and 88 and 14, respectively. IRAK2 and CXCL8 had higher expression in recurrent tumors while REG1A had higher expression in post-menopause samples. In late stage tumors constant expression of IRAK2 and REG1A was observed, while that of CXCL8 and EGF decreased. These genes may be potential biomarkers for the diagnosis of the disease.


Subject(s)
Gene Regulatory Networks , Ovarian Neoplasms , Humans , Female , Neoplasm Recurrence, Local , Biomarkers , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Sequence Analysis, RNA , Lithostathine/genetics
6.
J Biomol Struct Dyn ; 40(23): 13310-13324, 2022.
Article in English | MEDLINE | ID: mdl-34657565

ABSTRACT

Major cause of mortality in ovarian cancer can be attributed to a lack of specific and sensitive biomarkers for diagnosis and prognosis of the disease. Uncovering the mutations in genes involved in crucial oncogenic pathways is a key step in discovery and development of novel biomarkers. Whole exome sequencing (WES) is a powerful method for the detection of cancer driver mutations. The present work focuses on identifying functionally damaging mutations in patients with high-grade serous ovarian carcinoma (HGSC) through computational analysis of WES. In this study, WES data of HGSC patients was retrieved from the genomic literature available in sequence read archive, the variants were identified and comprehensive structural and functional analysis was performed. Interestingly, I66T and V138I mutations were found to be co-occurring in the IL7R gene in four out of five HGSC patient samples investigated in this study. The V138I mutation was located in the fibronectin type-3 domain and computationally assessed to be causing disruptive effects on the structure and dynamics of IL7R protein. This mutation was found to be co-occurring with the neutral I66T mutation in the same domain which compensated the disruptive effects of V138I variant. These comprehensive studies point to a hitherto unexplored significant role of the IL7R gene in ovarian carcinoma. It is envisaged that the work will lay the foundation for the development of a novel biomarker with potential application in molecular profiling and in estimation of the disease prognosis.Communicated by Ramaswamy H. Sarma.


Subject(s)
Cystadenocarcinoma, Serous , Ovarian Neoplasms , Female , Humans , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Cystadenocarcinoma, Serous/pathology , Mutation , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Genome , Genomics , Interleukin-7 Receptor alpha Subunit/genetics
7.
J Med Chem ; 62(23): 10563-10582, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31710479

ABSTRACT

The identification of a novel class of potent pan-genotypic NS5A inhibitors with good pharmacokinetic profile suitable for potential use in treating HCV infections is disclosed here. The present series of compounds are with less complex tricyclic central core, identified through a systematic SAR study carried out on biphenyl moiety. The SAR outcome has confirmed the requirement of near planar and linear conformation of the molecule to achieve the best pan-genotypic activity. In addition, SAR with substituted imidazoles on improvement of antiviral activity is disclosed. The newly identified compounds 12, 16, 19-21 have shown desirable pharmacokinetic profiles with a favorable uptake of compounds in liver and maintained a significant concentration for up to 8 h in the liver. In addition, compounds 20 and 21 have shown superior pan-genotypic anti-HCV activity compared to ledipasvir and daclatasvir. Additional characterization and preliminary safety assessment resulted in the identification of compound 20 as a potential clinical candidate.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Hepacivirus/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Genotype , Hepacivirus/drug effects , Hepacivirus/genetics , Molecular Structure , Structure-Activity Relationship , Viral Nonstructural Proteins/genetics
8.
Prev Vet Med ; 100(3-4): 242-7, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21511350

ABSTRACT

An outbreak of febrile illness with rash was reported in humans and buffaloes with pox lesions in some villages of Solapur and Kolhapur districts of Maharashtra state, India. Detailed clinico-epidemiological investigations were done with collection of blood, vesicular fluid and scab from humans and animals. A total of 166 suspected human cases from Kasegaon village in Solapur district and 185 cases were reported from 21 different villages from Kolhapur district. The attack rate in humans in Kasegaon village was 6.6% while in Kolhapur district the attack rate for buffaloes was 11.7%. Pox-like lesions were associated with fever, malaise, pain at site of lesion and axillary and inguinal lymphadenopathy in the humans. Infected buffaloes had lesions on teats, udders, external ears and eyelids. Laboratory investigations included detection of Buffalopox virus (BPXV) by electron microscopy (EM), virus isolation and polymerase chain reaction (PCR). Presence of BPXV was confirmed in 7 human cases and one buffalo in Kasegaon and 14 human cases from Kolhapur. The virus was isolated from 3 clinical specimens and Orthopoxvirus (OPXV) particles could be observed in EM. Thus, BPXV was identified as the etiological agent of the outbreak among both humans and buffaloes. Phylogenetic analysis based on the ATI and C18L gene revealed that a single strain of virus is circulating in India. Re-emergence of OPXV like BPXV is a real danger and contingency planning is needed to define prophylactic and therapeutic strategies to prevent or stop an epidemic. Considering the productivity losses caused by buffalopox infection and its zoonotic impact, the importance of control measures in reducing the economic and public health impact cannot be underestimated.


Subject(s)
Buffaloes , Vaccinia/epidemiology , Vaccinia/veterinary , Adult , Animals , Buffaloes/virology , DNA Primers , Databases, Nucleic Acid , Disease Outbreaks/veterinary , Female , Humans , India/epidemiology , Male , Middle Aged , Polymerase Chain Reaction , Vaccinia/blood , Vaccinia/transmission , Vaccinia virus/genetics , Vaccinia virus/isolation & purification , Young Adult , Zoonoses/epidemiology , Zoonoses/virology
9.
Parasit Vectors ; 3: 95, 2010 Oct 12.
Article in English | MEDLINE | ID: mdl-20939884

ABSTRACT

BACKGROUND: Densonucleosis viruses are the etiological agents of insect's disease. We have reported the isolation of densovirus from India and its distribution among the natural populations of Aedes aegypti mosquitoes across the country. Since densonucleosis virus persistently infects mosquito populations, and is demonstrated to negatively affect multiplication of dengue virus in Aedes albopictus, it would be interesting to study if this virus has a role in determining the susceptibility of the vector mosquito Ae. aegypti to chikugunya virus. METHODS: Mosquito cell lines and adult Ae. aegypti mosquitoes infected with densovirus were superinfected with Chikungunya virus and both the viruses were quantitated by determining their genomic copy number by real time amplification. Comparison was made between the log of genomic copy numbers of the viruses in the presence and absence of each other. RESULTS: The log of copy number of the viruses did not vary due to co-infection. Even though the RNA copy number of chikungunya virus increased over the period of time, no change was observed in the RNA copy number between the control and the co-infected group on any given day. Similarly, DNA copy number of densovirus also remained unchanged between the control and the co-infected groups. CONCLUSION: Chikungunya virus neither stimulates the replication of densovirus nor is its own replication suppressed due to co-infection. Ae. aegypti mosquitoes with densovirus infection were as susceptible to infection by chikungunya virus as the uninfected mosquitoes.

SELECTION OF CITATIONS
SEARCH DETAIL
...