Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 4(10): 3083-8, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22422198

ABSTRACT

Porous nanostructures of polypyrrole (Ppy) were fabricated using colloidal lithography and electrochemical techniques for potential applications in drug delivery. A sequential fabrication method was developed and optimized to maximize the coverage of the Ppy nanostructures and to obtain a homogeneous layer over the substrate. This was realized by masking with electrophoretically-assembled polystyrene (PS) nanospheres and then electroplating. Drug/biomolecule adsorption and the release characteristics for the porous nanostructures of Ppy were investigated using rhodamine B (Rh-B). Rh-B is an easily detectable small hydrophobic molecule that is used as a model for many drugs or biological substances. The porous Ppy nanostructures with an enhanced surface area exhibited higher Rh-B loading capacity than bulk planar films of Ppy. Moreover, tunability of surface morphology for further applications (e.g., sensing, cell adhesion) was demonstrated.


Subject(s)
Colloids/chemistry , Drug Carriers/chemistry , Nanostructures/chemistry , Polymers/chemistry , Pyrroles/chemistry , Adsorption , Polystyrenes/chemistry , Porosity , Rhodamines/chemistry
2.
Nanotechnology ; 22(27): 275713, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21606563

ABSTRACT

We report on the growth and fabrication of Ni-filled multi-walled carbon nanotubes (Ni-MWNTs) with an average diameter of 115 nm and variable length of 400 nm-1 µm. The Ni-MWNTs were grown using template-assisted electrodeposition and low pressure chemical vapor deposition (LPCVD) techniques. Anodized alumina oxide (AAO) templates were fabricated on Si using a current controlled process. This was followed by the electrodeposition of Ni nanowires (NWs) using galvanostatic pulsed current (PC) electrodeposition. Ni NWs served as the catalyst to grow Ni-MWNTs in an atmosphere of H2/C2H2 at a temperature of 700 °C. Time dependent depositions were carried out to understand the diffusion and growth mechanism of Ni-MWNTs. Characterization was carried out using scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), Raman spectroscopy and energy dispersive x-ray spectroscopy (EDX). TEM analysis revealed that the Ni nanowires possess a fcc structure. To understand the effects of the electrodeposition parameters, and also the effects of the high temperatures encountered during MWNT growth on the magnetic properties of the Ni-MWNTs, vibrating sample magnetometer (VSM) measurements were performed. The template-based fabrication method is repeatable, efficient, enables batch fabrication and provides good control on the dimensions of the Ni-MWNTs.

SELECTION OF CITATIONS
SEARCH DETAIL