Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 11(1): 4981, 2020 10 05.
Article in English | MEDLINE | ID: mdl-33020469

ABSTRACT

Antagonism or agonism of the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) prevents weight gain and leads to dramatic weight loss in combination with glucagon-like peptide-1 receptor agonists in preclinical models. Based on the genetic evidence supporting GIPR antagonism, we previously developed a mouse anti-murine GIPR antibody (muGIPR-Ab) that protected diet-induced obese (DIO) mice against body weight gain and improved multiple metabolic parameters. This work reconciles the similar preclinical body weight effects of GIPR antagonists and agonists in vivo, and here we show that chronic GIPR agonism desensitizes GIPR activity in primary adipocytes, both differentiated in vitro and adipose tissue in vivo, and functions like a GIPR antagonist. Additionally, GIPR activity in adipocytes is partially responsible for muGIPR-Ab to prevent weight gain in DIO mice, demonstrating a role of adipocyte GIPR in the regulation of adiposity in vivo.


Subject(s)
Adipocytes/drug effects , Anti-Obesity Agents/pharmacology , Receptors, Gastrointestinal Hormone/agonists , Receptors, Gastrointestinal Hormone/antagonists & inhibitors , Adipocytes/metabolism , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/therapeutic use , Antibodies/pharmacology , Antibodies/therapeutic use , Body Weight/drug effects , Cell Membrane/metabolism , Cells, Cultured , Cyclic AMP/metabolism , Diet, High-Fat/adverse effects , Fatty Acids/metabolism , Gastric Inhibitory Polypeptide/pharmacology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/drug therapy , Obesity/metabolism , Obesity/pathology , Receptors, Gastrointestinal Hormone/deficiency , Receptors, Gastrointestinal Hormone/metabolism
2.
Sci Transl Med ; 10(472)2018 12 19.
Article in English | MEDLINE | ID: mdl-30567927

ABSTRACT

Glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) has been identified in multiple genome-wide association studies (GWAS) as a contributor to obesity, and GIPR knockout mice are protected against diet-induced obesity (DIO). On the basis of this genetic evidence, we developed anti-GIPR antagonistic antibodies as a potential therapeutic strategy for the treatment of obesity and observed that a mouse anti-murine GIPR antibody (muGIPR-Ab) protected against body weight gain, improved multiple metabolic parameters, and was associated with reduced food intake and resting respiratory exchange ratio (RER) in DIO mice. We replicated these results in obese nonhuman primates (NHPs) using an anti-human GIPR antibody (hGIPR-Ab) and found that weight loss was more pronounced than in mice. In addition, we observed enhanced weight loss in DIO mice and NHPs when anti-GIPR antibodies were codosed with glucagon-like peptide-1 receptor (GLP-1R) agonists. Mechanistic and crystallographic studies demonstrated that hGIPR-Ab displaced GIP and bound to GIPR using the same conserved hydrophobic residues as GIP. Further, using a conditional knockout mouse model, we excluded the role of GIPR in pancreatic ß-cells in the regulation of body weight and response to GIPR antagonism. In conclusion, these data provide preclinical validation of a therapeutic approach to treat obesity with anti-GIPR antibodies.


Subject(s)
Glucagon-Like Peptide-1 Receptor/agonists , Obesity/drug therapy , Receptors, Gastrointestinal Hormone/antagonists & inhibitors , Adipocytes/metabolism , Animals , Antibodies/pharmacology , Antibodies/therapeutic use , Diet , Drug Therapy, Combination , Feeding Behavior , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptides/analogs & derivatives , Glucagon-Like Peptides/pharmacology , Glucagon-Like Peptides/therapeutic use , Humans , Immunoglobulin Fc Fragments/pharmacology , Immunoglobulin Fc Fragments/therapeutic use , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Liraglutide/pharmacology , Liraglutide/therapeutic use , Mice, Obese , Obesity/pathology , Primates , Receptors, Gastrointestinal Hormone/metabolism , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Respiration , Weight Gain/drug effects , Weight Loss/drug effects
3.
J Med Chem ; 58(24): 9663-79, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26551034

ABSTRACT

The HTS-based discovery and structure-guided optimization of a novel series of GKRP-selective GK-GKRP disrupters are revealed. Diarylmethanesulfonamide hit 6 (hGK-hGKRP IC50 = 1.2 µM) was optimized to lead compound 32 (AMG-0696; hGK-hGKRP IC50 = 0.0038 µM). A stabilizing interaction between a nitrogen atom lone pair and an aromatic sulfur system (nN → σ*S-X) in 32 was exploited to conformationally constrain a biaryl linkage and allow contact with key residues in GKRP. Lead compound 32 was shown to induce GK translocation from the nucleus to the cytoplasm in rats (IHC score = 0; 10 mg/kg po, 6 h) and blood glucose reduction in mice (POC = -45%; 100 mg/kg po, 3 h). X-ray analyses of 32 and several precursors bound to GKRP were also obtained. This novel disrupter of GK-GKRP binding enables further exploration of GKRP as a potential therapeutic target for type II diabetes and highlights the value of exploiting unconventional nonbonded interactions in drug design.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Glucokinase/metabolism , Hypoglycemic Agents/chemistry , Sulfonamides/chemistry , Thiophenes/chemistry , Active Transport, Cell Nucleus , Animals , Blood Glucose/metabolism , Cell Nucleus/metabolism , Crystallography, X-Ray , Cytoplasm/metabolism , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Male , Mice , Microsomes, Liver/metabolism , Models, Molecular , Molecular Conformation , Protein Binding , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Thiophenes/pharmacokinetics , Thiophenes/pharmacology
4.
Cell Metab ; 21(5): 731-8, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25955208

ABSTRACT

"Browning," the appearance and activation of brown-in-white (brite) adipose cells within inguinal white adipose tissue (iWAT), and induction of uncoupling protein 1 (UCP1) correlate with fibroblast growth factor-21 (FGF21)-induced weight loss and glucose homeostasis improvements. Therefore, antiobesity therapies targeting browning and brite adipocyte activation are currently being sought. To test the dependence of weight loss on browning, we examined whether this event was responsible for FGF21-Fc's beneficial effects. Lean and diet-induced obese mice housed at 21°C or 30°C that received FGF21-Fc exhibited similar degrees of body weight reduction and glucose homeostasis improvement. Substantial browning of iWAT occurred only in FGF21-Fc-treated lean mice housed at 21°C. Further, FGF21-Fc-treated Ucp1(-/-) mice showed robust improvements in body weight, glucose homeostasis, and plasma lipids, associated with increased energy expenditure and FGF21-Fc-induced Ppargc1 expression in iWAT. We conclude that FGF21 requires neither UCP1 nor brite adipocytes to elicit weight loss and improve glucose homeostasis.


Subject(s)
Adipose Tissue, White/drug effects , Anti-Obesity Agents/therapeutic use , Fibroblast Growth Factors/therapeutic use , Obesity/drug therapy , Adipocytes, Brown/drug effects , Adipocytes, Brown/pathology , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/physiopathology , Adipose Tissue, White/physiopathology , Animals , Diet/adverse effects , Energy Metabolism/drug effects , Gene Expression Regulation/drug effects , Glucose/metabolism , Hypoglycemic Agents/therapeutic use , Ion Channels/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Mitochondrial Proteins/genetics , Obesity/etiology , Obesity/genetics , Obesity/physiopathology , Thermogenesis/drug effects , Uncoupling Protein 1
5.
J Med Chem ; 58(11): 4462-82, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-25914941

ABSTRACT

The glucokinase-glucokinase regulatory protein (GK-GKRP) complex plays an important role in controlling glucose homeostasis in the liver. We have recently disclosed a series of arylpiperazines as in vitro and in vivo disruptors of the GK-GKRP complex with efficacy in rodent models of type 2 diabetes mellitus (T2DM). Herein, we describe a new class of aryl sulfones as disruptors of the GK-GKRP complex, where the central piperazine scaffold has been replaced by an aromatic group. Conformational analysis and exploration of the structure-activity relationships of this new class of compounds led to the identification of potent GK-GKRP disruptors. Further optimization of this novel series delivered thiazole sulfone 93, which was able to disrupt the GK-GKRP interaction in vitro and in vivo and, by doing so, increases cytoplasmic levels of unbound GK.


Subject(s)
Aminopyridines/pharmacology , Carrier Proteins/antagonists & inhibitors , Glucokinase/antagonists & inhibitors , Hypoglycemic Agents/pharmacology , Liver/drug effects , Small Molecule Libraries/pharmacology , Sulfones/chemistry , Aminopyridines/chemistry , Animals , Carrier Proteins/metabolism , Crystallography, X-Ray , Glucokinase/metabolism , Glucose/metabolism , Hypoglycemic Agents/chemistry , Liver/cytology , Liver/metabolism , Models, Molecular , Molecular Conformation , Molecular Structure , Rats , Rats, Sprague-Dawley , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Sulfones/pharmacology
6.
J Med Chem ; 57(14): 5949-64, 2014 Jul 24.
Article in English | MEDLINE | ID: mdl-25001129

ABSTRACT

Structure-activity relationship investigations conducted at the 5-position of the N-pyridine ring of a series of N-arylsulfonyl-N'-2-pyridinyl-piperazines led to the identification of a novel bis-pyridinyl piperazine sulfonamide (51) that was a potent disruptor of the glucokinase-glucokinase regulatory protein (GK-GKRP) interaction. Analysis of the X-ray cocrystal of compound 51 bound to hGKRP revealed that the 3-pyridine ring moiety occupied a previously unexplored binding pocket within the protein. Key features of this new binding mode included forming favorable contacts with the top face of the Ala27-Val28-Pro29 ("shelf region") as well as an edge-to-face interaction with the Tyr24 side chain. Compound 51 was potent in both biochemical and cellular assays (IC50=0.005 µM and EC50=0.205 µM, respectively) and exhibited acceptable pharmacokinetic properties for in vivo evaluation. When administered to db/db mice (100 mg/kg, po), compound 51 demonstrated a robust pharmacodynamic effect and significantly reduced blood glucose levels up to 6 h postdose.


Subject(s)
Carrier Proteins/antagonists & inhibitors , Glucokinase/antagonists & inhibitors , Glucokinase/metabolism , Piperazines/pharmacology , Small Molecule Libraries/pharmacology , Binding Sites/drug effects , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Crystallography, X-Ray , Dose-Response Relationship, Drug , Glucokinase/chemistry , Humans , Models, Molecular , Molecular Conformation , Piperazines/chemical synthesis , Piperazines/chemistry , Protein Binding/drug effects , Pyridines/chemistry , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
7.
J Med Chem ; 57(7): 3094-116, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24611879

ABSTRACT

We have recently reported a novel approach to increase cytosolic glucokinase (GK) levels through the binding of a small molecule to its endogenous inhibitor, glucokinase regulatory protein (GKRP). These initial investigations culminated in the identification of 2-(4-((2S)-4-((6-amino-3-pyridinyl)sulfonyl)-2-(1-propyn-1-yl)-1-piperazinyl)phenyl)-1,1,1,3,3,3-hexafluoro-2-propanol (1, AMG-3969), a compound that effectively enhanced GK translocation and reduced blood glucose levels in diabetic animals. Herein we report the results of our expanded SAR investigations that focused on modifications to the aryl carbinol group of this series. Guided by the X-ray cocrystal structure of compound 1 bound to hGKRP, we identified several potent GK-GKRP disruptors bearing a diverse set of functionalities in the aryl carbinol region. Among them, sulfoximine and pyridinyl derivatives 24 and 29 possessed excellent potency as well as favorable PK properties. When dosed orally in db/db mice, both compounds significantly lowered fed blood glucose levels (up to 58%).


Subject(s)
Carrier Proteins/antagonists & inhibitors , Diabetes Mellitus/drug therapy , Glucokinase/antagonists & inhibitors , Hepatocytes/drug effects , Microsomes, Liver/drug effects , Piperazines/chemistry , Sulfonamides/pharmacology , Animals , Biological Availability , Blood Glucose/metabolism , Carrier Proteins/metabolism , Crystallography, X-Ray , Diabetes Mellitus/metabolism , Disease Models, Animal , Glucokinase/metabolism , Hepatocytes/metabolism , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Mice , Microsomes, Liver/metabolism , Models, Molecular , Piperazines/pharmacology , Rats , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemistry
8.
J Med Chem ; 57(2): 309-24, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24405172

ABSTRACT

Small molecule activators of glucokinase have shown robust efficacy in both preclinical models and humans. However, overactivation of glucokinase (GK) can cause excessive glucose turnover, leading to hypoglycemia. To circumvent this adverse side effect, we chose to modulate GK activity by targeting the endogenous inhibitor of GK, glucokinase regulatory protein (GKRP). Disrupting the GK-GKRP complex results in an increase in the amount of unbound cytosolic GK without altering the inherent kinetics of the enzyme. Herein we report the identification of compounds that efficiently disrupt the GK-GKRP interaction via a previously unknown binding pocket. Using a structure-based approach, the potency of the initial hit was improved to provide 25 (AMG-1694). When dosed in ZDF rats, 25 showed both a robust pharmacodynamic effect as well as a statistically significant reduction in glucose. Additionally, hypoglycemia was not observed in either the hyperglycemic or normal rats.


Subject(s)
Carrier Proteins/metabolism , Glucokinase/metabolism , Hypoglycemic Agents/chemistry , Piperazines/chemistry , Animals , Binding Sites , Carrier Proteins/chemistry , Crystallography, X-Ray , Glucokinase/chemistry , Hepatocytes/drug effects , Hepatocytes/metabolism , High-Throughput Screening Assays , Humans , Hypoglycemia/chemically induced , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/pharmacology , Piperazines/adverse effects , Piperazines/pharmacology , Protein Conformation , Protein Transport , Rats , Rats, Zucker , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/adverse effects , Sulfonamides/chemistry , Sulfonamides/pharmacology
9.
J Med Chem ; 57(2): 325-38, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24405213

ABSTRACT

In the previous report , we described the discovery and optimization of novel small molecule disruptors of the GK-GKRP interaction culminating in the identification of 1 (AMG-1694). Although this analogue possessed excellent in vitro potency and was a useful tool compound in initial proof-of-concept experiments, high metabolic turnover limited its advancement. Guided by a combination of metabolite identification and structure-based design, we have successfully discovered a potent and metabolically stable GK-GKRP disruptor (27, AMG-3969). When administered to db/db mice, this compound demonstrated a robust pharmacodynamic response (GK translocation) as well as statistically significant dose-dependent reductions in fed blood glucose levels.


Subject(s)
Carrier Proteins/metabolism , Glucokinase/metabolism , Hypoglycemic Agents/chemistry , Piperazines/chemical synthesis , Sulfonamides/chemical synthesis , Alkynes/chemical synthesis , Alkynes/pharmacokinetics , Alkynes/pharmacology , Animals , Blood Glucose/metabolism , Carrier Proteins/chemistry , Glucokinase/chemistry , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Mice , Microsomes, Liver/metabolism , Models, Molecular , Morpholines/chemical synthesis , Morpholines/pharmacokinetics , Morpholines/pharmacology , Piperazines/pharmacokinetics , Piperazines/pharmacology , Protein Binding , Protein Transport , Rats , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology
10.
Nature ; 504(7480): 437-40, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24226772

ABSTRACT

Glucose homeostasis is a vital and complex process, and its disruption can cause hyperglycaemia and type II diabetes mellitus. Glucokinase (GK), a key enzyme that regulates glucose homeostasis, converts glucose to glucose-6-phosphate in pancreatic ß-cells, liver hepatocytes, specific hypothalamic neurons, and gut enterocytes. In hepatocytes, GK regulates glucose uptake and glycogen synthesis, suppresses glucose production, and is subject to the endogenous inhibitor GK regulatory protein (GKRP). During fasting, GKRP binds, inactivates and sequesters GK in the nucleus, which removes GK from the gluconeogenic process and prevents a futile cycle of glucose phosphorylation. Compounds that directly hyperactivate GK (GK activators) lower blood glucose levels and are being evaluated clinically as potential therapeutics for the treatment of type II diabetes mellitus. However, initial reports indicate that an increased risk of hypoglycaemia is associated with some GK activators. To mitigate the risk of hypoglycaemia, we sought to increase GK activity by blocking GKRP. Here we describe the identification of two potent small-molecule GK-GKRP disruptors (AMG-1694 and AMG-3969) that normalized blood glucose levels in several rodent models of diabetes. These compounds potently reversed the inhibitory effect of GKRP on GK activity and promoted GK translocation both in vitro (isolated hepatocytes) and in vivo (liver). A co-crystal structure of full-length human GKRP in complex with AMG-1694 revealed a previously unknown binding pocket in GKRP distinct from that of the phosphofructose-binding site. Furthermore, with AMG-1694 and AMG-3969 (but not GK activators), blood glucose lowering was restricted to diabetic and not normoglycaemic animals. These findings exploit a new cellular mechanism for lowering blood glucose levels with reduced potential for hypoglycaemic risk in patients with type II diabetes mellitus.


Subject(s)
Carrier Proteins/antagonists & inhibitors , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Adaptor Proteins, Signal Transducing , Animals , Blood Glucose/metabolism , Carrier Proteins/metabolism , Cell Nucleus/enzymology , Crystallography, X-Ray , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/enzymology , Disease Models, Animal , Hepatocytes , Humans , Hyperglycemia/blood , Hyperglycemia/drug therapy , Hyperglycemia/enzymology , Hypoglycemic Agents/chemistry , Liver/cytology , Liver/enzymology , Liver/metabolism , Male , Models, Molecular , Organ Specificity , Phosphorylation/drug effects , Piperazines/chemistry , Piperazines/metabolism , Piperazines/pharmacology , Piperazines/therapeutic use , Protein Binding/drug effects , Protein Transport/drug effects , Rats , Rats, Wistar , Sulfonamides/chemistry , Sulfonamides/metabolism , Sulfonamides/pharmacology , Sulfonamides/therapeutic use
11.
J Pharmacol Exp Ther ; 338(1): 70-81, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21471191

ABSTRACT

Pharmacologic contributions of directly agonizing glucagon-like peptide 1 (GLP-1) receptor or antagonizing glucagon receptor (GCGR) on energy state and glucose homeostasis were assessed in diet-induced obese (DIO) mice. Metabolic rate and respiratory quotient (RQ), hyperglycemic clamp, stable isotope-based dynamic metabolic profiling (SiDMAP) studies of (13)C-labeled glucose during glucose tolerance test (GTT) and gene expression were assessed in cohorts of DIO mice after a single administration of GLP-1 analog [GLP-1-(23)] or anti-GCGR antibody (Ab). GLP-1-(23) and GCGR Ab similarly improved GTT. GLP-1-(23) decreased food intake and body weight trended lower. GCGR Ab modestly decreased food intake without significant effect on body weight. GLP-1-(23) and GCGR Ab decreased RQ with GLP-1, causing a greater effect. In a hyperglycemic clamp, GLP-1-(23) reduced hepatic glucose production (HGP), increased glucose infusion rate (GIR), increased glucose uptake in brown adipose tissue, and increased whole-body glucose turnover, glycolysis, and rate of glycogen synthesis. GCGR Ab slightly decreased HGP, increased GIR, and increased glucose uptake in the heart. SiDMAP showed that GLP-1-(23) and GCGR Ab increased (13)C lactate labeling from glucose, indicating that liver, muscle, and other organs were involved in the rapid disposal of glucose from plasma. GCGR Ab and GLP-1-(23) caused different changes in mRNA expression levels of glucose- and lipid metabolism-associated genes. The effect of GLP-1-(23) on energy state and glucose homeostasis was greater than GCGR Ab. Although GCGR antagonism is associated with increased circulating levels of GLP-1, most GLP-1-(23)-associated pharmacologic effects are more pronounced than GCGR Ab.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Blood Glucose/drug effects , Energy Metabolism/drug effects , Glucagon-Like Peptide 1/analogs & derivatives , Homeostasis/drug effects , Obesity/metabolism , Receptors, Glucagon/antagonists & inhibitors , Animals , Blood Glucose/physiology , Body Weight/drug effects , Body Weight/physiology , Dietary Fats/administration & dosage , Drug Delivery Systems/methods , Energy Metabolism/physiology , Glucagon-Like Peptide 1/administration & dosage , Glucagon-Like Peptide 1/physiology , Glucagon-Like Peptide-1 Receptor , Homeostasis/physiology , Humans , Male , Mice , Mice, Inbred C57BL , Obesity/drug therapy , Receptors, Glucagon/physiology
12.
Am J Physiol Endocrinol Metab ; 299(4): E624-32, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20647556

ABSTRACT

Antagonism of the glucagon receptor (GCGR) is associated with increased circulating levels of glucagon-like peptide-1 (GLP-1). To investigate the contribution of GLP-1 to the antidiabetic actions of GCGR antagonism, we administered an anti-GCGR monoclonal antibody (mAb B) to wild-type mice and GLP-1 receptor knockout (GLP-1R KO) mice. Treatment of wild-type mice with mAb B lowered fasting blood glucose, improved glucose tolerance, and enhanced glucose-stimulated insulin secretion during an intraperitoneal glucose tolerance test (ipGTT). In contrast, treatment of GLP-1R KO mice with mAb B had little efficacy during an ipGTT. Furthermore, pretreatment with the GLP-1R antagonist exendin-(9-39) diminished the antihyperglycemic effects of mAb B in wild-type mice. To determine the mechanism whereby mAb B improves glucose tolerance, we generated a monoclonal antibody that specifically antagonizes the human GLP-1R. Using a human islet transplanted mouse model, we demonstrated that pancreatic islet GLP-1R signaling is required for the full efficacy of the GCGR antagonist. To identify the source of the elevated GLP-1 observed in GCGR mAb-treated mice, we measured active GLP-1 content in pancreas and intestine from db/db mice treated with anti-GCGR mAb for 8 wk. Elevated GLP-1 in GCGR mAb-treated mice was predominantly derived from increased pancreatic GLP-1 synthesis and processing. All together, these data show that pancreatic GLP-1 is a significant contributor to the glucose-lowering effects observed in response to GCGR antagonist treatment.


Subject(s)
Glucagon-Like Peptide 1/physiology , Glucagon/physiology , Islets of Langerhans/physiology , Receptors, Glucagon/antagonists & inhibitors , Animals , Antibodies, Monoclonal/pharmacology , Disease Models, Animal , Female , Glucagon/blood , Glucagon-Like Peptide-1 Receptor , Glucose Tolerance Test , Islets of Langerhans/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Peptide Fragments/pharmacology , Receptors, Glucagon/blood , Receptors, Glucagon/physiology , Signal Transduction/drug effects
13.
J Pharmacol Exp Ther ; 331(3): 871-81, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19720878

ABSTRACT

Uncontrolled hepatic glucose output (HGO) contributes significantly to the pathological hyperglycemic state of patients with type 2 diabetes. Glucagon, through action on its receptor, stimulates HGO, thereby leading to increased glycemia. Antagonizing the glucagon signaling pathway represents an attractive therapeutic approach for the treatment of type 2 diabetes. We previously reported the generation and characterization of several high-affinity monoclonal antibodies (mAbs) targeting the glucagon receptor (GCGR). In the present study, we demonstrate that a 5-week treatment of diet-induced obese mice with mAb effectively normalized nonfasting blood glucose. Similar treatment also reduced fasting blood glucose without inducing hypoglycemia or other undesirable metabolic perturbations. In addition, no hypoglycemia was found in db/db mice that were treated with a combination of insulin and mAb. Long-term treatment with the mAb caused dose-dependent hyperglucagonemia and minimal to mild alpha-cell hyperplasia in lean mice. There was no evidence of pancreatic alpha-cell neoplastic transformation in mice treated with mAb for as long as 18 weeks. Treatment-induced hyperglucagonemia and alpha-cell hyperplasia were reversible after treatment withdrawal for periods of 4 and 10 weeks, respectively. It is noteworthy that pancreatic beta-cell function was preserved, as demonstrated by improved glucose tolerance throughout the 18-week treatment period. Our studies further support the concept that long-term inhibition of GCGR signaling by a mAb could be an effective approach for controlling diabetic hyperglycemia.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Glucagon-Secreting Cells/pathology , Glucagon/blood , Glucose/metabolism , Hyperglycemia/drug therapy , Hypoglycemic Agents/therapeutic use , Receptors, Glucagon/antagonists & inhibitors , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Blood Glucose , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Hyperglycemia/blood , Hyperglycemia/metabolism , Hyperplasia , Hypoglycemia/blood , Hypoglycemia/metabolism , Hypoglycemia/prevention & control , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/adverse effects , Insulin/administration & dosage , Insulin/therapeutic use , Male , Mice , Mice, Inbred C57BL , Obesity/blood , Obesity/metabolism , Tachyphylaxis
14.
Diabetes ; 58(1): 250-9, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18840786

ABSTRACT

OBJECTIVE: Fibroblast growth factor 21 (FGF21) has emerged as an important metabolic regulator of glucose and lipid metabolism. The aims of the current study are to evaluate the role of FGF21 in energy metabolism and to provide mechanistic insights into its glucose and lipid-lowering effects in a high-fat diet-induced obesity (DIO) model. RESEARCH DESIGN AND METHODS: DIO or normal lean mice were treated with vehicle or recombinant murine FGF21. Metabolic parameters including body weight, glucose, and lipid levels were monitored, and hepatic gene expression was analyzed. Energy metabolism and insulin sensitivity were assessed using indirect calorimetry and hyperinsulinemic-euglycemic clamp techniques. RESULTS: FGF21 dose dependently reduced body weight and whole-body fat mass in DIO mice due to marked increases in total energy expenditure and physical activity levels. FGF21 also reduced blood glucose, insulin, and lipid levels and reversed hepatic steatosis. The profound reduction of hepatic triglyceride levels was associated with FGF21 inhibition of nuclear sterol regulatory element binding protein-1 and the expression of a wide array of genes involved in fatty acid and triglyceride synthesis. FGF21 also dramatically improved hepatic and peripheral insulin sensitivity in both lean and DIO mice independently of reduction in body weight and adiposity. CONCLUSIONS: FGF21 corrects multiple metabolic disorders in DIO mice and has the potential to become a powerful therapeutic to treat hepatic steatosis, obesity, and type 2 diabetes.


Subject(s)
Energy Metabolism/drug effects , Fatty Liver/prevention & control , Fibroblast Growth Factors/pharmacology , Insulin Resistance/physiology , Obesity/drug therapy , Adiposity/drug effects , Animals , Blood Glucose/metabolism , Blotting, Western , Body Weight/drug effects , Calorimetry , Dietary Fats/administration & dosage , Fatty Liver/metabolism , Fatty Liver/physiopathology , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Glucokinase/genetics , Glucokinase/metabolism , Glucose Clamp Technique , Insulin/blood , Lipids/blood , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/physiopathology , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...