Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Genes ; 35(2): 203-14, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17546492

ABSTRACT

The Epstein-Barr virus (EBV) tumor-associated latent membrane protein 1 (LMP1) gene expression is transactivated by EBV nuclear antigen 2 (EBNA2) in human B cells. We previously reported that an E-box element at the LMP1 regulatory sequence (LRS) represses transcription of the LMP1 gene through the recruitment of a Max-Mad1-mSin3A complex. In the present study, using deletion/mutation analysis, and electrophoretic mobility shift assays, we show that the promoter region adjacent to the E-box (-59/-67) is required for the full repression conferred by E-box binding proteins. The repressive effect of these factors was overcome by an inhibitor of histone deacetylation, Trichostatin A (TSA), concurring with the reports that histone deacetylation plays an important role in repression mediated by Max-Mad1-mSin3A complex. Furthermore, ChIP analyses showed that histones at the transcriptionally active LMP1 promoter were hyperacetylated, whereas in the absence of transcription they were hypoacetylated. EBNA2 activation of the promoter required a consensus AP-2 sequence in the -103/-95 LRS region. While EMSA results and the low level of AP-2 factors expression in B cells argue against known AP-2 factors binding to this site, several pieces of evidence point to a similar mechanism of promoter activation as seen by AP-2 factors. We conclude that an AP-2 site-binding factor and EBNA2 act in concert to overcome the repression of the LMP1 promoter via the consensus AP-2 site. This activation showed strong correlation with histone hyperacetylation at the promoter, indicating this to be a major mechanism for the EBNA2 mediated LMP1 transactivation.


Subject(s)
Consensus Sequence , Epstein-Barr Virus Nuclear Antigens/physiology , Gene Expression Regulation, Viral/physiology , Herpesvirus 4, Human/genetics , Regulatory Sequences, Nucleic Acid , Transcription Factor AP-2/physiology , Transcriptional Activation , Viral Matrix Proteins/genetics , Viral Proteins/physiology , Base Sequence , Binding Sites/genetics , Cell Line , Herpesvirus 4, Human/metabolism , Humans , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...