Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Ecology ; 98(11): 2940-2951, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28869777

ABSTRACT

Genetic variation in a foundation species may affect the composition of associated communities as well as modify ecosystem function. While the ecological consequences of genetic diversity of foundation species have been widely reported, the ability of individual genotypes to support dissimilar communities has been documented only in forest ecosystems. Here, for the first time in a marine ecosystem, we test whether the different genotypes of the rockweed Fucus vesiculosus harbor distinct community phenotypes and whether the genetic similarity of individual genotypes or their defensive compound content can explain the variation of the associated communities. We reared replicated genotypes in a common garden in the sea and analyzed their associated communities of periphytic algae and invertebrates as well as determined their contents of defense compounds, phlorotannins, and genetic distance based on neutral molecular markers. The periphytic community was abundant in mid-summer and its biovolume, diversity and community composition varied among the rockweed genotypes. The diversity of the periphytic community decreased with its increasing biovolume. In autumn, when grazers were abundant, periphytic community biomass was lower and less variable among rockweed genotypes, indicating different relative importance of bottom-up regulation through heritable variation of the foundation species and top-down regulation through grazing intensity. Similarly, composition of the invertebrate community varied among the rockweed genotypes. Although the genotype explained about 10-18% of the variation in associated communities, the variation was explained neither by the genetic distance nor the phlorotannin content. Thus, neither neutral genetic markers nor a single phenotypic trait could provide a mechanistic understanding of the genetic basis of community specificity. Therefore, a more comprehensive mapping of quantitative trait variation is needed to understand the underlying mechanisms. The community specificity implies that genetic variation within a foundation species is crucial for the biodiversity and assembly of associated organisms and, thus, for the functioning of associated communities. The result highlights the importance of ensuring the genetic variation of foundation species as a conservation target.


Subject(s)
Ecosystem , Fucus/classification , Genetic Variation , Animals , Biodiversity , Invertebrates
2.
J Phycol ; 52(5): 877-887, 2016 10.
Article in English | MEDLINE | ID: mdl-27485031

ABSTRACT

Genetic diversity may play an analogous role to species diversity, as it can contribute to ecosystem function and stability, and provision of ecosystem services. In the Baltic Sea, perennial algal beds are often comprised of only Fucus vesiculosus and the amount of genetic variation in fitness-related traits (i.e., the ability of the alga to photosynthesize or withstand stress) will thus determine the alga's local persistence in a changing environment. To study genetic variation in the crucial traits behind persistence we grew replicate vegetative branches that came from the same genotype in common gardens. We quantified osmotic stress tolerance and recovery responses by exposing branches to desiccation, freezing, and hyposalinity regimens. Our results show that genetic variation among genotypes was apparent for some photosynthetic parameters (maximal electron transport rate, saturation irradiance for electron transport, nonphotochemical quenching) and growth. Algae tolerated freezing (1,440 min at -2.5°C) and hyposalinity (1,560 min at 2.5) well, but did not recover from desiccation (70 min at 12°C, causing ~94% water loss). Furthermore, we found very little if any evidence on genetic variation in tolerance to these stressors. Our results suggest that low salinity and cold winters in the northern marginal populations selected for hyposalinity and freezing tolerant genotypes, possibly eroding genetic variation in tolerance, but that tolerance to harsh desiccation has been lost, likely due to relaxed selection. The overall availability of genetic variation in fitness related traits might be supportive for F. vesiculosus during adaptation to gradual changes of its environment.


Subject(s)
Fucus/genetics , Genetic Variation , Osmotic Pressure , Photosynthesis/genetics , Desiccation , Finland , Freezing , Fucus/metabolism , Salinity
SELECTION OF CITATIONS
SEARCH DETAIL