Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
Add more filters










Publication year range
1.
Vet Res ; 55(1): 7, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225645

ABSTRACT

Carbonyl-reducing enzymes (CREs) catalyse the reduction of carbonyl groups in many eobiotic and xenobiotic compounds in all organisms, including helminths. Previous studies have shown the important roles of CREs in the deactivation of several anthelmintic drugs (e.g., flubendazole and mebendazole) in adults infected with the parasitic nematode Haemonchus contortus, in which the activity of a CRE is increased in drug-resistant strains. The aim of the present study was to compare the abilities of nematodes of both a drug-susceptible strain (ISE) and a drug-resistant strain (IRE) to reduce the carbonyl group of flubendazole (FLU) in different developmental stages (eggs, L1/2 larvae, L3 larvae, and adults). In addition, the effects of selected CRE inhibitors (e.g., glycyrrhetinic acid, naringenin, silybin, luteolin, glyceraldehyde, and menadione) on the reduction of FLU were evaluated in vitro and ex vivo in H. contortus adults. The results showed that FLU was reduced by H. contortus in all developmental stages, with adult IRE females being the most metabolically active. Larvae (L1/2 and L3) and adult females of the IRE strain reduced FLU more effectively than those of the ISE strain. Data from the in vitro inhibition study (performed with cytosolic-like fractions of H. contortus adult homogenate) revealed that glycyrrhetinic acid, naringenin, mebendazole and menadione are effective inhibitors of FLU reduction. Ex vivo study data showed that menadione inhibited FLU reduction and also decreased the viability of H. contortus adults to a similar extent. Naringenin and mebendazole were not toxic at the concentrations tested, but they did not inhibit the reduction of FLU in adult worms ex vivo.


Subject(s)
Anthelmintics , Glycyrrhetinic Acid , Haemonchus , Female , Animals , Mebendazole/pharmacology , Mebendazole/therapeutic use , Vitamin K 3/pharmacology , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Larva , Glycyrrhetinic Acid/pharmacology
2.
Chemosphere ; 345: 140446, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37852376

ABSTRACT

Anthelmintics are drugs used for the treatment and prevention of diseases caused by parasitic worms (helminths). While the importance of anthelmintics in human as well as in veterinary medicine is evident, they represent emerging contaminants of the environment. Human anthelmintics are mainly used in tropical and sub-tropical regions, while veterinary anthelmintics have become frequently-occurring environmental pollutants worldwide due to intensive agri- and aquaculture production. In the environment, anthelmintics are distributed in water and soil in relation to their structure and physicochemical properties. Consequently, they enter various organisms directly (e.g. plants, soil invertebrates, water animals) or indirectly through food-chain. Several anthelmintics elicit toxic effects in non-target species. Although new information has been made available, anthelmintics in ecosystems should be more thoroughly investigated to obtain complex knowledge on their impact in various environments. This review summarizes available information about the occurrence, behavior, and toxic effect of anthelmintics in environment. Several reasons why anthelmintics are dangerous contaminants are highlighted along with options to reduce contamination. Negative effects are also outlined.


Subject(s)
Anthelmintics , Environmental Pollutants , Animals , Humans , Ecosystem , Anthelmintics/toxicity , Environmental Pollutants/toxicity , Soil , Water
3.
ACS Chem Biol ; 18(9): 1993-2002, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37622522

ABSTRACT

Tacrine was withdrawn from clinical use as a drug against Alzheimer's disease in 2013, mainly due to drug-induced liver injury. The culprit of tacrine-associated hepatotoxicity is believed to be the 7-OH-tacrine metabolite, a possible precursor of quinone methide (Qmeth), which binds to intracellular -SH proteins. In our study, several different animal and human models (liver microsomes, primary hepatocytes, and liver slices) were used to investigate the biotransformation and hepatotoxicity of tacrine and its 7-substituted analogues (7-methoxy-, 7-phenoxy-, and 7-OH-tacrine). Our goal was to find the most appropriate in vitro model for studying tacrine hepatotoxicity and, through rational structure modifications, to develop derivatives of tacrine that are less prone to Qmeth formation. Our results show that none of animal models tested accurately mimic human tacrine biotransformation; however, the murine model seems to be more suitable than the rat model. Tacrine metabolism was overall most accurately mimicked in three-dimensional (3D) spheroid cultures of primary human hepatocytes (PHHs). In this system, tacrine and 7-methoxytacrine were hydroxylated to 7-OH-tacrine, whereas 7-phenoxytacrine formed, as expected, only trace amounts. Surprisingly, however, our study showed that 7-OH-tacrine was the least hepatotoxic (7-OH-tacrine < tacrine < 7-methoxytacrine < 7-phenoxytacrine) even after doses had been adjusted to achieve the same intracellular concentrations. The formation of Qmeth-cysteine and Qmeth-glutathione adducts after human liver microsome incubation was confirmed by all of the studied tacrine derivatives, but these findings were not confirmed after incubation with 3D PHH spheroids. Therefore, the presented data call into question the suggested previously hypothesized mechanism of toxicity, and the results open new avenues for chemical modifications to improve the safety of novel tacrine derivatives.


Subject(s)
Chemical and Drug Induced Liver Injury , Indolequinones , Methamphetamine , Humans , Animals , Mice , Rats , Tacrine/toxicity , Biotransformation
4.
Vet Res ; 54(1): 59, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443113

ABSTRACT

Most drugs used in the treatment of helminthiasis in humans and animals have lost their efficacy due to the development of drug-resistance in helminths. Moreover, since anthelmintics, like many pharmaceuticals, are now recognized as hazardous contaminants of the environment, returning to medicinal plants and their products represents an environmentally friendly way to treat helminthiasis. The goal of the present study was to test the anthelminthic activity of methanol extracts of eight selected European ferns from the genera Dryopteris, Athyrium and Blechnum against the nematode Haemonchus contortus, a widespread parasite of small ruminants. Eggs and adults of H. contortus drug-susceptible strain ISE and drug-resistant strain WR were isolated from experimentally infected sheep. The efficacy of fern extracts was assayed using egg hatch test and adults viability test based on ATP-level measurement. Among the ferns tested, only Dryopteris aemula extract (0.2 mg/mL) inhibited eggs hatching by 25% in comparison to control. Athyrium distentifolium, Dryopteris aemula and Dryopteris cambrensis were effective against H. contortus adults. In concentration 0.1 mg/mL, A. distentifolium, D. aemula, D. cambrensis significantly decreased the viability of females from ISE and WR strains to 36.2%, 51.9%, 32.9% and to 35.3%, 27.0%, 23.3%, respectively in comparison to untreated controls. None of the extracts exhibited toxicity in precise cut slices from ovine liver. Polyphenol's analysis identified quercetin, kaempferol, luteolin, 3-hydroxybenzoic acid, caffeic acid, coumaric acid and protocatechuic acid as the major components of these anthelmintically active ferns.


Subject(s)
Anthelmintics , Ferns , Haemonchus , Helminthiasis , Sheep Diseases , Veterinary Drugs , Humans , Sheep , Animals , Plant Extracts/pharmacology , Veterinary Drugs/pharmacology , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Larva , Sheep Diseases/drug therapy , Sheep Diseases/parasitology
5.
Vet Res ; 54(1): 19, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36882840

ABSTRACT

Short-chain dehydrogenases/reductases (SDRs) regulate the activities of many hormones and other signaling molecules and participate in the deactivation of various carbonyl-bearing xenobiotics. Nevertheless, knowledge about these important enzymes in helminths remains limited. The aim of our study was to characterize the SDR superfamily in the parasitic nematode Haemonchus contortus. Genome localization of SDRs was explored, and phylogenetic analysis in comparison with SDRs from free-living nematode Caenorhabditis elegans and the domestic sheep (Ovis aries, a typical host of H. contortus) was constructed. The expression profile of selected SDRs during the life cycle along with differences between the drug-susceptible and drug-resistant strains, were also studied. Genome sequencing enabled the identification of 46 members of the SDR family in H. contortus. A number of genes have no orthologue in the sheep genome. In all developmental stages of H. contortus, SDR1, SDR3, SDR5, SDR6, SDR14, and SDR18 genes were the most expressed, although in individual stages, huge differences in expression levels were observed. A comparison of SDRs expression between the drug-susceptible and drug-resistant strains of H. contortus revealed several SDRs with changed expression in the resistant strain. Specifically, SDR1, SDR12, SDR13, SDR16 are SDR candidates related to drug-resistance, as the expression of these SDRs is consistently increased in most stages of the drug-resistant H. contortus. These findings revealing several SDR enzymes of H. contortus warrant further investigation.


Subject(s)
Haemonchus , Animals , Sheep , Haemonchus/genetics , Phylogeny , Life Cycle Stages
6.
Chemosphere ; 324: 138343, 2023 May.
Article in English | MEDLINE | ID: mdl-36898439

ABSTRACT

Albendazole (ABZ), a broad-spectrum anthelmintic drug frequently used in livestock against parasitic worms (helminths), enters the environment mainly via faeces of treated animals left in the pastures or used as dung for field fertilization. To obtain information about the subsequent fate of ABZ, the distribution of ABZ and its metabolites in the soil around faeces along with uptake and effects in plants were monitored under real agricultural conditions. Sheep were treated with a recommended dose of ABZ; faeces were collected and used to fertilize fields with fodder plants. Soil samples (in two depths) and samples of two plants, clover (Trifolium pratense) and alfalfa (Medicago sativa), were collected at distances 0-75 cm from the faeces for 3 months after fertilization. The environmental samples were extracted using QuEChERS and LLE sample preparation procedures. The targeted analysis of ABZ and its metabolites was conducted by using the validated UHPLC-MS method. Two main ABZ metabolites, ABZ-sulfoxide (anthelmintically active) and ABZ-sulfone (inactive), persisted in soil (up to 25 cm from faeces) and in plants for three months when the experiment ended. In plants, ABZ metabolites were detected even 60 cm from the faeces and abiotic stress was observed in the central plants. The considerable distribution and persistence of ABZ metabolites in soil and plants amplify the negative environmental impact of ABZ documented in other studies.


Subject(s)
Albendazole , Anthelmintics , Sheep , Animals , Albendazole/analysis , Soil , Anthelmintics/metabolism , Feces/chemistry
7.
Article in English | MEDLINE | ID: mdl-35738156

ABSTRACT

Albendazole (ABZ) is an anthelmintic frequently used to treat haemonchosis, a common parasitosis of ruminants caused by the gastrointestinal nematode Haemonchus contortus. This parasite is able to protect itself against ABZ via the formation of inactive ABZ-glycosides. The present study was designed to deepen the knowledge about the role of UDP-glycosyltransferases (UGTs) in ABZ glycosylation in H. contortus. The induction effect of phenobarbital, a classical inducer of UGTs, as well as ABZ and ABZ-sulphoxide (ABZSO, the main active metabolite of ABZ) on UGTs expression and UGT activity toward ABZ was studied ex vivo in isolated adult nematodes. The effect of three potential UGT inhibitors (5-nitrouracil, 4,6-dihydroxy-5-nitropyrimidine and sulfinpyrazone) on ABZ glycosylation was tested. Pre-incubation of nematodes with ABZ and ABZSO led to increased expression of several UGTs as well as ABZ-glycosides formation in subsequent treatment. Phenobarbital also induced UGTs expression, but did not affect ABZ biotransformation. In the nematode's subcellular fraction, sulfinpyrazone inhibited UGT activity toward ABZ, although no effect of other inhibitors was observed. The inhibitory potential of sulfinpyrazone on the formation of ABZ-glycosides was also proved ex vivo in living nematodes. The obtained results confirmed the role of UGTs in ABZ biotransformation in H. contortus adults and revealed sulfinpyrazone as a potent inhibitor of ABZ glycosylation in this parasite. The possible use of sulfinpyrazone with ABZ in combination therapy merits further research.


Subject(s)
Anthelmintics , Haemonchus , Nematoda , Sheep Diseases , Albendazole , Animals , Anthelmintics/therapeutic use , Glycosides/metabolism , Glycosides/pharmacology , Glycosides/therapeutic use , Glycosyltransferases , Phenobarbital/metabolism , Phenobarbital/pharmacology , Phenobarbital/therapeutic use , Sheep , Sheep Diseases/drug therapy , Sulfinpyrazone/metabolism , Sulfinpyrazone/pharmacology , Sulfinpyrazone/therapeutic use , Uridine Diphosphate
8.
Drug Metab Rev ; 54(3): 282-298, 2022 08.
Article in English | MEDLINE | ID: mdl-35635097

ABSTRACT

Uridine diphosphate sugar-utilizing glycosyltransferases (UGTs) are an enzyme superfamily that catalyzes glycosyl residues transfer from activated nucleotide sugars to acceptor molecules. In addition to various endogenous compounds, numerous xenobiotics are substrates of UGTs. As the glycosides formed are generally less active/toxic and more hydrophilic than aglycones, UGTs effectively protect organisms from potentially harmful xenobiotics. Therefore, increased UGT expression and/or activity improve the protection of the organism and may contribute to the development of individuals that become more resistant to certain xenobiotics. While the function of UGTs in the resistance of human cancer cells to chemotherapy is now well known, other organisms and other xenobiotics have attracted much less attention. This review was designed to fill this knowledge gap by presenting complex information about the role of UGTs in xenobiotic-resistance in various organisms. This summarization and evaluation of the available information reveals that UGTs play an important role in defense against xenobiotics not only in humans, but in countless other organisms such as parasites, insects, and plants. Moreover, many recent studies clearly show the participation of UGTs in the resistance of nematodes to anthelmintics, insects to insecticides, weeds to herbicides as well as humans to various drugs (not only those used in cancer therapy but also in the treatment of epilepsy, psychiatric disorders, hypertension, hypercholesterolemia, and HIV infection). Nevertheless, although the contribution of UGTs to xenobiotic resistance in diverse organisms has become obvious, many pieces of information remain missing, for example with regard to the mechanisms of UGT regulation.


Subject(s)
Drug Resistance , Drug Tolerance , Glycosyltransferases , Uridine Diphosphate , Xenobiotics , Animals , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Humans , Phylogeny , Uridine Diphosphate/classification , Uridine Diphosphate/genetics , Uridine Diphosphate/metabolism , Xenobiotics/metabolism , Xenobiotics/toxicity
9.
Pharmaceutics ; 14(4)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35456588

ABSTRACT

As a widely distributed parasitic nematode of ruminants, Haemonchus contortus has become resistant to most anthelmintic classes, there has been a major demand for new compounds against H. contortus and related nematodes. Recent phenotypic screening has revealed two compounds, designated as BLK127 and HBK4, that are active against H. contortus larvae. The present study was designed to assess the activity of these compounds against H. contortus eggs and adults, hepatotoxicity in rats and sheep, as well as biotransformation in H. contortus adults and the ovine liver. Both compounds exhibited no inhibitory effect on the hatching of eggs. The benzyloxy amide BLK127 significantly decreased the viability of adults in sensitive and resistant strains of H. contortus and showed no hepatotoxic effect, even at the highest concentration tested (100 µM). In contrast, HBK4 had no impact on the viability of H. contortus adults and exhibited significant hepatotoxicity. Based on these findings, HBK4 was excluded from further studies, while BLK127 seems to be a potential candidate for a new anthelmintic. Consequently, biotransformation of BLK127 was tested in H. contortus adults and the ovine liver. In H. contortus, several metabolites formed via hydroxylation, hydrolysis and glycosidation were identified, but the extent of biotransformation was low, and the total quantity of the metabolites formed did not differ significantly between the sensitive and resistant strains. In contrast, ovine liver cells metabolized BLK127 more extensively with a glycine conjugate of 4-(pentyloxy)benzoic acid as the main BLK127 metabolite.

10.
Sci Total Environ ; 822: 153527, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35101480

ABSTRACT

Veterinary anthelmintics excreted from treated animals pass to soil, subsequently to plants and then to their consumers. This circulation might have various consequences, including drug-resistance promotion in helminths. The present study was designed to follow the effect of the environmental circulation of the common anthelmintic drug albendazole (ABZ) in real farm conditions on the parasitic nematode Haemonchus contortus in vivo. Two fields with fodder plants (clover and alfalfa) were fertilized, the first with dung from ABZ-treated sheep (at the recommended dosage), the second with dung from non-treated sheep (controls). After a 10-week growth period, the fresh fodder from both fields was used to feed two groups of sheep, which were infected with H. contortus. Eggs and adult nematodes from the animals of both groups were isolated, and various parameters were compared. No significant changes in the eggs' sensitivity to ABZ and thiabendazole were observed. However, significantly increased expression of several cytochromes P450 and UDP-glycosyl transferases as well as increased oxidation and glycosylation of ABZ and ABZ-sulfoxide (ABZ-SO) was found in the exposed nematodes. These results show that ABZ environmental circulation improves the ability of the helminths to deactivate ABZ.


Subject(s)
Anthelmintics , Haemonchus , Nematoda , Albendazole/metabolism , Albendazole/pharmacology , Albendazole/therapeutic use , Animals , Anthelmintics/metabolism , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Drug Resistance , Haemonchus/metabolism , Sheep
11.
Vet Res ; 52(1): 143, 2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34895342

ABSTRACT

Haemonchus contortus is a parasitic nematode of ruminants which causes significant losses to many farmers worldwide. Since the drugs currently in use for the treatment of haemonchosis are losing their effectiveness due to the drug-resistance of this nematode, a new or repurposed drug is highly needed. As the antipsychotic drug sertraline (SRT) has been shown to be effective against the parasitic nematodes Trichuris muris, Ancylostoma caninum and Schistosoma mansoni, the aim of the present study was to evaluate the possible effect of SRT on H. contortus. The potential hepatotoxicity of SRT was tested in sheep, a common H. contortus host. In addition, the main metabolic pathways of SRT in H. contortus and the ovine liver were identified. While no effect of SRT on H. contortus egg hatching was observed, SRT was found to significantly decrease the viability of H. contortus adults in drug-sensitive and resistant strains, with its effect comparable to the commonly used anthelmintics levamisole and monepantel. Moreover, SRT in anthelmintically active concentrations showed no toxicity to the ovine liver. Biotransformation of SRT in H. contortus was weak, with most of the drug remaining unmetabolized. Production of the main metabolite hydroxy-SRT did not differ significantly between strains. Other minor metabolites such as SRT-O-glucoside, dihydroxy-SRT, and SRT-ketone were also identified in H. contorts adults. Compared to H. contortus, the ovine liver metabolized SRT more extensively, mainly via desmethylation and glucuronidation. In conclusion, the potency of SRT against H. contortus was proven, and it should be tested further toward possible repurposing.


Subject(s)
Anthelmintics , Haemonchiasis , Sertraline , Sheep Diseases , Animals , Anthelmintics/pharmacology , Anthelmintics/toxicity , Biotransformation , Haemonchiasis/drug therapy , Haemonchiasis/veterinary , Haemonchus/drug effects , Sertraline/pharmacology , Sertraline/toxicity , Sheep , Sheep Diseases/drug therapy
12.
Vet Res ; 52(1): 124, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34593042

ABSTRACT

The parasitic gastrointestinal nematode Haemonchus contortus causes serious economic losses to agriculture due to infection and disease in small ruminant livestock. The development of new therapies requires appropriate viability testing, with methods nowadays relying on larval motility or development using procedures that involve microscopy. None of the existing biochemical methods, however, are performed in adults, the target stage of the anthelmintic compounds. Here we present a new test for the viability of H. contortus adults and exsheathed third-stage larvae which is based on a bioluminescent assay of ATP content normalized to total protein concentration measured using bicinchoninic acid. All the procedure steps were optimized to achieve maximal sensitivity and robustness. This novel method can be used as a complementary assay for the phenotypic screening of new compounds with potential antinematode activity in exsheathed third-stage larvae and in adult males. Additionally, it might be used for the detection of drug-resistant isolates.


Subject(s)
Adenosine Triphosphate/therapeutic use , Haemonchiasis/veterinary , Haemonchus/isolation & purification , Luminescent Measurements/veterinary , Molecular Diagnostic Techniques/veterinary , Sheep Diseases/diagnosis , Animals , Female , Haemonchiasis/diagnosis , Haemonchiasis/parasitology , Haemonchus/growth & development , Larva/growth & development , Luminescent Measurements/instrumentation , Male , Molecular Diagnostic Techniques/instrumentation , Sheep , Sheep Diseases/parasitology , Sheep, Domestic
13.
Environ Pollut ; 286: 117590, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34438501

ABSTRACT

Anthelmintics, drugs against parasitic worms, are frequently used in livestock and might act as danger environmental microcontaminants. The present study was designed to monitor the possible circulation of common anthelmintic drug albendazole (ABZ) and its metabolites in the real agriculture conditions. The sheep were treated with the recommended dose of ABZ. Collected faeces were used for the fertilization of a field with fodder plants (alfalfa and clover) which served as feed for sheep from a different farm. The selective ultrasensitive mass spectrometry revealed surprisingly high concentrations of active ABZ metabolite (ABZ-sulphoxide) in all samples (dung, plants, ovine plasma, rumen content and faeces). Our results prove for the first time an undesirable permeation of ABZ metabolites from sheep excrement into plants (used as fodder) and subsequently to other sheep in real agricultural conditions. This circulation causes the permanent exposition of the ecosystems and food-chain to the drug and can promote the development of drug resistance in helminths.


Subject(s)
Anthelmintics , Veterinary Drugs , Albendazole , Animals , Ecosystem , Farms , Sheep
14.
Biochim Biophys Acta Gene Regul Mech ; 1864(10): 194734, 2021 10.
Article in English | MEDLINE | ID: mdl-34339889

ABSTRACT

Glutathione peroxidase 7 (GPx7) acts as an intracellular stress sensor/transmitter and plays an important role in adipocyte differentiation and the prevention of obesity related pathologies. For this reason, finding the regulatory mechanisms that control GPx7 expression is of great importance. As microRNAs (miRNAs) could participate in the regulation of GPx7 expression, we studied the inhibition of GPx7 expression by four selected miRNAs with relation to obesity and adipogenesis. The effect of the transfection of selected miRNAs mimics on GPx7 expression was tested in three cell models (HEK293, SW480, AT-MSC). The interaction of selected miRNAs with the 3'UTR of GPx7 was followed up on using a luciferase gene reporter assay. In addition, the levels of GPx7 and selected miRNAs in adipose tissue mesenchymal stem cells (AT-MSC) and mature adipocytes from four human donors were compared, with the changes in these levels during adipogenesis analyzed. Our results show for the first time that miR-137 and miR-29b bind to the 3'UTR region of GPx7 and inhibit the expression of this enzyme at the mRNA and protein level in all the human cells tested. However, no negative correlation between miR-137 nor miR-29b level and GPx7 was observed during adipogenesis. Despite the confirmed inhibition of GPx7 expression by miR-137 and miR-29b, the action of these two molecules in adipogenesis and mature adipocytes must be accompanied by other regulators.


Subject(s)
Adipogenesis/genetics , Gene Expression Regulation, Enzymologic , MicroRNAs/metabolism , Peroxidases/genetics , 3' Untranslated Regions , Adipocytes/metabolism , Cell Line, Tumor , Cells, Cultured , Female , Glutathione Peroxidase , Humans , Middle Aged , RNA, Messenger/metabolism , Stem Cells/metabolism
15.
Int J Mol Sci ; 22(13)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206260

ABSTRACT

Although manure is an important source of minerals and organic compounds it represents a certain risk of spreading the veterinary drugs in the farmland and their permeation to human food. We tested the uptake of the anthelmintic drug fenbendazole (FBZ) by soybean, a common crop plant, from the soil and its biotransformation and accumulation in different soybean organs, including beans. Soybeans were cultivated in vitro or grown in a greenhouse in pots. FBZ was extensively metabolized in roots of in vitro seedlings, where sixteen metabolites were identified, and less in leaves, where only two metabolites were found. The soybeans in greenhouse absorbed FBZ by roots and translocated it to the leaves, pods, and beans. In roots, leaves, and pods two metabolites were identified. In beans, FBZ and one metabolite was found. FBZ exposure did not affect the plant fitness or yield, but reduced activities of some antioxidant enzymes and isoflavonoids content in the beans. In conclusion, manure or biosolids containing FBZ and its metabolites represent a significant risk of these pharmaceuticals entering food consumed by humans or animal feed. In addition, the presence of these drugs in plants can affect plant metabolism, including the production of isoflavonoids.


Subject(s)
Fenbendazole/metabolism , Glycine max/metabolism , Biological Transport , Biotransformation , Fenbendazole/pharmacokinetics
16.
Front Physiol ; 11: 594116, 2020.
Article in English | MEDLINE | ID: mdl-33324241

ABSTRACT

The nematode Haemonchus contortus, a gastrointestinal parasite of ruminants, can severely burden livestock production. Although anthelmintics are the mainstay in the treatment of haemonchosis, their efficacy diminishes due to drug-resistance development in H. contortus. An increased anthelmintics inactivation via biotransformation belongs to a significant drug-resistance mechanism in H. contortus. UDP-glycosyltransferases (UGTs) participate in the metabolic inactivation of anthelmintics and other xenobiotic substrates through their conjugation with activated sugar, which drives the elimination of the xenobiotics due to enhanced solubility. The UGTs family, in terms of the biotransformation of commonly used anthelmintics, has been well described in adults as a target stage. In contrast, the free-living juvenile stages of H. contortus have attracted less attention. The expression of UGTs considerably varies throughout the life cycle of the juvenile nematodes, suggesting their different roles. Furthermore, the constitutive expression in a susceptible strain with two resistant strains shows several resistance-related changes in UGTs expression, and the exposure of juvenile stages of H. contortus to albendazole (ABZ) and ABZ-sulfoxide (ABZSO; in sublethal concentrations) leads to the increased expression of several UGTs. The anthelmintic drug ABZ and its primary metabolite ABZSO biotransformation, tested in the juvenile stages, shows significant differences between susceptible and resistant strain. Moreover, higher amounts of glycosidated metabolites of ABZ are formed in the resistant strain. Our results show similarly, as in adults, the UGTs and glycosidations significant for resistance-related differences in ABZ biotransformation and warrant further investigation in their individual functions.

17.
Molecules ; 25(16)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796616

ABSTRACT

In recent years interest has grown in the occurrence and the effects of pharmaceuticals in the environment. The aim of this work is to evaluate the risk of fertilizing crops with manure from livestock treated with anthelmintics. The present study was designed to follow the fate of the commonly used anthelmintic drug, ivermectin (IVM) and its metabolites in soybeans (Glycine max (L.) Merr.), a plant that is grown and consumed world-wide for its high content of nutritional and health-beneficial substances. In vitro plantlets and soybean plants, cultivated in a greenhouse, were used for this purpose. Our results showed the uptake of IVM and its translocation to the leaves, but not in the pods and the beans. Four IVM metabolites were detected in the roots, and one in the leaves. IVM exposure decreased slightly the number and weight of the beans and induced changes in the activities of antioxidant enzymes. In addition, the presence of IVM affected the proportion of individual isoflavones and reduced the content of isoflavones aglycones, which might decrease the therapeutic value of soybeans. Fertilization of soybean fields with manure from IVM-treated animals appears to be safe for humans, due to the absence of IVM in beans, the food part of plants. On the other hand, it could negatively affect soybean plants and herbivorous invertebrates.


Subject(s)
Antioxidants/metabolism , Glycine max/metabolism , Isoflavones/metabolism , Ivermectin/pharmacology , Plant Leaves/metabolism , Plant Roots/metabolism , Seeds/metabolism , Antiparasitic Agents/pharmacology , Biological Transport , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Roots/drug effects , Plant Roots/growth & development , Seeds/drug effects , Seeds/growth & development , Glycine max/drug effects , Glycine max/growth & development
18.
Int J Mol Sci ; 21(16)2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32824876

ABSTRACT

Albendazole (ABZ), a widely used anthelmintic drug, enters the environment mainly via livestock excrements. To evaluate the environmental impact of ABZ, the knowledge of its uptake, effects and metabolism in all non-target organisms, including plants, is essential. The present study was designed to identify the metabolic pathway of ABZ and to test potential ABZ phytotoxicity in fodder plant alfalfa, with seeds and in vitro regenerants used for these purposes. Alfalfa was chosen, as it may meet manure from ABZ-treated animals in pastures and fields. Alfalfa is often used as a feed of livestock, which might already be infected with helminths. The obtained results showed that ABZ did not inhibit alfalfa seed germination and germ growth, but evoked stress and a toxic effect in alfalfa regenerants. Alfalfa regenerants were able to uptake ABZ and transform it into 21 metabolites. UHPLC-MS/MS analysis revealed three new ABZ metabolites that have not been described yet. The discovery of the parent compound ABZ together with the anthelmintically active and instable metabolites in alfalfa leaves shows that the contact of fodder plants with ABZ-containing manure might represent not only a danger for herbivorous invertebrates, but also may cause the development of ABZ resistance in helminths.


Subject(s)
Albendazole/pharmacology , Anthelmintics/pharmacology , Medicago sativa/drug effects , Metabolome , Animal Feed , Germination , Medicago sativa/growth & development , Medicago sativa/metabolism
19.
Nutrients ; 12(7)2020 Jul 18.
Article in English | MEDLINE | ID: mdl-32708388

ABSTRACT

Prenylflavonoids in the human organism exhibit various health-beneficial activities, although they may interfere with drugs via the modulation of the expression and/or activity of drug-metabolizing enzymes. As intestinal cells are exposed to the highest concentrations of prenylflavonoids, we decided to study the cytotoxicity and modulatory effects of the four main hop-derived prenylflavonoids on the activities and mRNA expression of the main drug-conjugating enzymes in human CaCo-2 cells. Proliferating CaCo-2 cells were used for these purposes as a model of colorectal cancer cells, and differentiated CaCo-2 cells were used as an enterocyte-like model. All the tested prenylflavonoids inhibited the CaCo-2 cells proliferation, with xanthohumol proving the most effective (IC50 8.5 µM). The prenylflavonoids modulated the activities and expressions of the studied enzymes to a greater extent in the differentiated, as opposed to the proliferating, CaCo-2 cells. In the differentiated cells, all the prenylflavonoids caused a marked increase in glutathione S-transferase and catechol-O-methyltransferase activities, while the activity of sulfotransferase was significantly inhibited. Moreover, the prenylflavonoids upregulated the mRNA expression of uridine diphosphate (UDP)-glucuronosyl transferase 1A6 and downregulated that of glutathione S-transferase 1A1/2.


Subject(s)
Catechol O-Methyltransferase/genetics , Catechol O-Methyltransferase/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Flavonoids/pharmacology , Gene Expression/drug effects , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Humulus/chemistry , Neoprene/pharmacology , Propiophenones/pharmacology , Sulfotransferases/genetics , Sulfotransferases/metabolism , Caco-2 Cells , Cell Differentiation/genetics , Cell Proliferation/genetics , Flavonoids/isolation & purification , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Humans , Neoprene/isolation & purification , Propiophenones/isolation & purification
20.
Vet Res ; 51(1): 94, 2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32703268

ABSTRACT

The efficacy of anthelmintic therapy of farm animals rapidly decreases due to drug resistance development in helminths. In resistant isolates, the increased expression and activity of drug-metabolizing enzymes (DMEs), e.g. cytochromes P450 (CYPs), UDP-glycosyltransferases (UGTs) and P-glycoprotein transporters (P-gps), in comparison to sensitive isolates have been described. However, the mechanisms and circumstances of DMEs induction are not well known. Therefore, the present study was designed to find the changes in expression of CYPs, UGTs and P-gps in adult parasitic nematodes Haemonchus contortus exposed to sub-lethal doses of the benzimidazole anthelmintic drug albendazole (ABZ) and its active metabolite ABZ-sulfoxide (ABZSO). In addition, the effect of ABZ at sub-lethal doses on the ability to deactivate ABZ during consequent treatment was studied. The results showed that contact of H. contortus adults with sub-lethal doses of ABZ and ABZSO led to a significant induction of several DMEs, particularly cyp-2, cyp-3, cyp-6, cyp-7, cyp-8, UGT10B1, UGT24C1, UGT26A2, UGT365A1, UGT366C1, UGT368B2, UGT367A1, UGT371A1, UGT372A1 and pgp-3, pgp-9.1, pgp-9.2, pgp-10. This induction led to increased formation of ABZ metabolites (especially glycosides) and their increased export from the helminths' body into the medium. The present study demonstrates for the first time that contact of H. contortus with sub-lethal doses of ABZ (e.g. during underdose treatment) improves the ability of H. contortus adults to deactivate ABZ in consequent therapy.


Subject(s)
Albendazole/analogs & derivatives , Albendazole/pharmacology , Antinematodal Agents/pharmacology , Drug Resistance , Haemonchus/drug effects , Animals , Dose-Response Relationship, Drug , Haemonchus/enzymology , Inactivation, Metabolic
SELECTION OF CITATIONS
SEARCH DETAIL
...